BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1314664)

  • 1. Electron transfer from excited tryptophan to cytochrome c: mechanism of phosphorescence quenching?
    Dadak V; Vanderkooi JM; Wright WW
    Biochim Biophys Acta; 1992 Apr; 1100(1):33-9. PubMed ID: 1314664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of alkaline phosphatase with cytochrome c.
    Dadák V; Vrána O; Nováková O; Antalík M
    Biochim Biophys Acta; 1996 Sep; 1297(1):69-76. PubMed ID: 8841382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit.
    Mersol JV; Steel DG; Gafni A
    Biochemistry; 1991 Jan; 30(3):668-75. PubMed ID: 1846302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited states of tryptophan in cod parvalbumin. Identification of a short-lived emitting triplet state at room temperature.
    Sudhakar K; Phillips CM; Williams SA; Vanderkooi JM
    Biophys J; 1993 May; 64(5):1503-11. PubMed ID: 8324187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between cytochrome c and cytochrome c peroxidase: excited-state reactions of zinc- and tin-substituted derivatives.
    Koloczek H; Horie T; Yonetani T; Anni H; Maniara G; Vanderkooi JM
    Biochemistry; 1987 Jun; 26(11):3142-8. PubMed ID: 3038178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan.
    Wright WW; Owen CS; Vanderkooi JM
    Biochemistry; 1992 Jul; 31(28):6538-44. PubMed ID: 1633165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reduction of porphyrin cytochrome c by hydrated electrons and the subsequent electron transfer reaction from reduced porphyrin cytochrome c to ferricytochrome c.
    de Kok J; Butler J; Braams R; van Gelder BF
    Biochim Biophys Acta; 1977 May; 460(2):290-8. PubMed ID: 192289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence.
    Strambini GB; Cioni P; Felicioli RA
    Biochemistry; 1987 Aug; 26(16):4968-75. PubMed ID: 3663638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation and quenching of the excited states of tryptophan in keratin.
    Smith GJ; Melhuish WH
    J Photochem Photobiol B; 1993 Jan; 17(1):63-8. PubMed ID: 7679440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of electron acceptors with the excited triplet state of Zn cytochrome c.
    Horie T; Maniara G; Vanderkooi JM
    FEBS Lett; 1984 Nov; 177(2):287-90. PubMed ID: 6094249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan luminescence from liver alcohol dehydrogenase in its complexes with coenzyme. A comparative study of protein conformation in solution.
    Strambini GB; Gonnelli M
    Biochemistry; 1990 Jan; 29(1):196-203. PubMed ID: 2322541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valinomycin modifies phosphorescence quenching in cytochrome c oxidase.
    Butko P; He J; Nicholls P
    Biochem Biophys Res Commun; 1992 Dec; 189(3):1477-83. PubMed ID: 1336370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range electron exchange measured in proteins by quenching of tryptophan phosphorescence.
    Vanderkooi JM; Englander SW; Papp S; Wright WW; Owen CS
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5099-103. PubMed ID: 2367526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c.
    Seetharaman R; White SP; Rivera M
    Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic tryptophan phosphorescence as a marker of conformation and oxygen diffusion in purified cytochrome oxidase.
    Papp S; King TE; Vanderkooi JM
    FEBS Lett; 1991 May; 283(1):113-6. PubMed ID: 1645290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorescence maxima and triplet state lifetimes of NAD+ and epsilon-NAD+ in ternary complexes with horse liver alcohol dehydrogenase.
    Rousslang K; Allen L; Ross JB
    Photochem Photobiol; 1989 Feb; 49(2):137-43. PubMed ID: 2710823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan phosphorescence of the Ca2+-ATPase of sarcoplasmic reticulum.
    Vanderkooi JM; Papp S; Pikula S; Martonosi A
    Biochim Biophys Acta; 1988 Nov; 957(2):230-6. PubMed ID: 2973355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-temperature phosphorescence from azurin derivatives. Phosphorescence quenching in oxidized native azurin.
    Klemens FK; McMillin DR
    Photochem Photobiol; 1992 May; 55(5):671-6. PubMed ID: 1528979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Strambini GB; Gabellieri E; Gonnelli M; Rahuel-Clermont S; Branlant G
    Biophys J; 1998 Jun; 74(6):3165-72. PubMed ID: 9635769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.