These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 13149258)

  • 1. [The oxidation of glycerin studied by means of Bacillus subtilis variants].
    WIAME JM; BOURGEOIS S; LAMBION R
    Arch Int Physiol; 1954 Feb; 62(1):155-6. PubMed ID: 13149258
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidative dissimilation of glycerol studied with variants of Bacillus subtilis.
    WIAME JM; BOURGEOIS S; LAMBION R
    Nature; 1954 Jul; 174(4418):37-8. PubMed ID: 13176430
    [No Abstract]   [Full Text] [Related]  

  • 3. [Glycogen formation from glycerin].
    BERNHARD K; WAGNER H
    Helv Physiol Pharmacol Acta; 1951 Dec; 9(4):C 59. PubMed ID: 14945796
    [No Abstract]   [Full Text] [Related]  

  • 4. The oxidation of glycerol by Mycobacteria.
    HUNTER GJ
    Biochem J; 1953 Sep; 55(2):320-8. PubMed ID: 13093685
    [No Abstract]   [Full Text] [Related]  

  • 5. [ON THE CAUSES OF DECREASE IN REDOX POTENTIAL IN CULTURES OF MICROORGANISMS].
    RABOTONOVA IL; PLAKUNOVA VG; PALEEVA MA; SHENDEROVA LV
    Mikrobiologiia; 1963; 32():954-60. PubMed ID: 14137790
    [No Abstract]   [Full Text] [Related]  

  • 6. Alternate pathways of glycerol oxidation in Acetobacter suboxydans.
    HAUGE JG; KING TE; CHELDELIN VH
    Nature; 1954 Dec; 174(4441):1104-5. PubMed ID: 13214086
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis.
    JACOBS NJ; VANDEMARK PJ
    J Bacteriol; 1960 Apr; 79(4):532-8. PubMed ID: 14406375
    [No Abstract]   [Full Text] [Related]  

  • 8. Alternate conversions of glycerol to dihydroxyacetone in Acetobacter sub-oxydans.
    HAUGE JG; KING TE; CHELDELIN VH
    J Biol Chem; 1955 May; 214(1):1-9. PubMed ID: 14367358
    [No Abstract]   [Full Text] [Related]  

  • 9. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol.
    Abdellaoui S; Hickey DP; Stephens AR; Minteer SD
    Chem Commun (Camb); 2015 Oct; 51(76):14330-3. PubMed ID: 26271633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Identification of L-glutamate in the products of carbohydrate storage in Bacillus subtilis].
    Chalumeau H; Rapoport G
    C R Acad Hebd Seances Acad Sci D; 1971 Mar; 272(12):1690-3. PubMed ID: 4995605
    [No Abstract]   [Full Text] [Related]  

  • 11. Variation of antimetabolite sensitivity with different carbon sources in Bacillus subtilis.
    Chaudhuri A; Mishra AK; Nanda G
    Folia Microbiol (Praha); 1982; 27(2):73-5. PubMed ID: 6806159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23.
    Yokoyama K; Miyashita T; Araki Y; Ito E
    Eur J Biochem; 1986 Dec; 161(2):479-89. PubMed ID: 3096735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Metabolism of glutamic acid by Bacillus subtilis].
    WIAME JM; STORCK R
    Biochim Biophys Acta; 1953 Feb; 10(2):268-79. PubMed ID: 13051403
    [No Abstract]   [Full Text] [Related]  

  • 14. [Participation of the tricarboxylic acid cycle in nitrogen metabolism by Bacillus subtilis].
    WIAME JM; STORCK R; BOURGEOIS S
    Arch Int Physiol; 1953 Jun; 61(3):431-2. PubMed ID: 13093087
    [No Abstract]   [Full Text] [Related]  

  • 15. A comparison of the properties of penicillinase produced by Bacillus subtilis and Bacillus cereus with and without addition of penicillin.
    MANSON EE; POLLOCK MR; TRIDGELL EJ
    J Gen Microbiol; 1954 Dec; 11(3):493-505. PubMed ID: 13221770
    [No Abstract]   [Full Text] [Related]  

  • 16. Production of glutamyl polypeptide by Bacillus subtilis.
    THORNE CB; GOMEZ CG; NOYES HE; HOUSEWRIGHT RD
    J Bacteriol; 1954 Sep; 68(3):307-15. PubMed ID: 13201526
    [No Abstract]   [Full Text] [Related]  

  • 17. Degradation of substituted pyrimidine nucleosides by Escherichia coli and Bacillus subtilis.
    SLOTNICK IJ; VISSER DW; RITTENBERG SC
    J Biol Chem; 1954 May; 208(1):217-23. PubMed ID: 13174529
    [No Abstract]   [Full Text] [Related]  

  • 18. [OXIDATIVE PHOSPHORYLATION IN BAC. SUBTILIS AND BAC. MESENTERICUS].
    KOLCHINSKAIA ID; TINIANOVA NZ; DRYNDINA LP
    Mikrobiol Zh; 1964; 26():33-7. PubMed ID: 14348365
    [No Abstract]   [Full Text] [Related]  

  • 19. Microbial pentosanases. II. Some factors affecting the production of pentosanases by Bacillus pumilus and Bacillus subtilis.
    SIMPSON FJ
    Can J Microbiol; 1956 Feb; 2(1):28-38. PubMed ID: 13293582
    [No Abstract]   [Full Text] [Related]  

  • 20. [STUDIES ON DEFECTIVE OXIDATION MUTANTS OF BACILLUS SUBTILIS].
    GAUZE GF; KOCHETKOVA GV; BIBKOVA MV
    Dokl Akad Nauk SSSR; 1964 Apr; 155():1184-7. PubMed ID: 14228375
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.