BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 1315046)

  • 1. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors.
    Pardo L; Ballesteros JA; Osman R; Weinstein H
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4009-12. PubMed ID: 1315046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication?
    Taylor EW; Agarwal A
    FEBS Lett; 1993 Jul; 325(3):161-6. PubMed ID: 8319802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarity conserved positions in transmembrane domains of G-protein coupled receptors and bacteriorhodopsin.
    Zhang D; Weinstein H
    FEBS Lett; 1994 Jan; 337(2):207-12. PubMed ID: 8287978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the conserved residues between halobacterial retinal proteins and G-protein coupled receptors: implications for GPCR modeling.
    Metzger TG; Paterlini MG; Portoghese PS; Ferguson DM
    J Chem Inf Comput Sci; 1996; 36(4):857-61. PubMed ID: 8768770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: I. Comparison with bacteriorhodopsin.
    Du P; Alkorta I
    Protein Eng; 1994 Oct; 7(10):1221-9. PubMed ID: 7855137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors.
    Trumpp-Kallmeyer S; Hoflack J; Bruinvels A; Hibert M
    J Med Chem; 1992 Sep; 35(19):3448-62. PubMed ID: 1328638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated method for modeling seven-helix transmembrane receptors from experimental data.
    Herzyk P; Hubbard RE
    Biophys J; 1995 Dec; 69(6):2419-42. PubMed ID: 8599649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two hypotheses--one answer. Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors.
    Soppa J
    FEBS Lett; 1994 Mar; 342(1):7-11. PubMed ID: 8143852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors.
    Cavasotto CN; Orry AJ; Abagyan RA
    Proteins; 2003 May; 51(3):423-33. PubMed ID: 12696053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel computational method for predicting the transmembrane structure of G-protein coupled receptors: application to human C5aR and C3aR.
    Rayan A; Siew N; Cherno-Schwartz S; Matzner Y; Bautsch W; Goldblum A
    Recept Channels; 2000; 7(2):121-37. PubMed ID: 10952089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of rhodopsin: implications for vision and beyond.
    Okada T; Palczewski K
    Curr Opin Struct Biol; 2001 Aug; 11(4):420-6. PubMed ID: 11495733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains.
    Ballesteros JA; Weinstein H
    Biophys J; 1992 Apr; 62(1):107-9. PubMed ID: 1600090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BUNDLE: a program for building the transmembrane domains of G-protein-coupled receptors.
    Filizola M; Perez JJ; Cartenì-Farina M
    J Comput Aided Mol Des; 1998 Mar; 12(2):111-8. PubMed ID: 9690171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seven-helix bundles: molecular modeling via restrained molecular dynamics.
    Sansom MS; Son HS; Sankararamakrishnan R; Kerr ID; Breed J
    Biophys J; 1995 Apr; 68(4):1295-310. PubMed ID: 7787019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors.
    Yohannan S; Faham S; Yang D; Whitelegge JP; Bowie JU
    Proc Natl Acad Sci U S A; 2004 Jan; 101(4):959-63. PubMed ID: 14732697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structure of the highly conserved seventh transmembrane domain of G-protein-coupled receptors.
    Berlose JP; Convert O; Brunissen A; Chassaing G; Lavielle S
    Eur J Biochem; 1994 Nov; 225(3):827-43. PubMed ID: 7957220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriorhodopsin in a periodic boundary water-vacuum-water box as an example towards stable molecular dynamics simulations of G-protein coupled receptors.
    ter Laak AM; Kühne R
    Recept Channels; 1999; 6(4):295-308. PubMed ID: 10412722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution and structure of aminergic G protein-coupled receptors.
    Donnelly D; Findlay JB; Blundell TL
    Recept Channels; 1994; 2(1):61-78. PubMed ID: 8081733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-alpha-helical elements modulate polytopic membrane protein architecture.
    Riek RP; Rigoutsos I; Novotny J; Graham RM
    J Mol Biol; 2001 Feb; 306(2):349-62. PubMed ID: 11237604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the 3D structure of GPCRs from sequence.
    Shacham S; Topf M; Avisar N; Glaser F; Marantz Y; Bar-Haim S; Noiman S; Naor Z; Becker OM
    Med Res Rev; 2001 Sep; 21(5):472-83. PubMed ID: 11579443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.