These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 1315053)

  • 1. Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor.
    Pakula AA; Simon MI
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4144-8. PubMed ID: 1315053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnostic cross-linking of paired cysteine pairs demonstrates homologous structures for two chemoreceptor domains with low sequence identity.
    Lai WC; Peach ML; Lybrand TP; Hazelbauer GL
    Protein Sci; 2006 Jan; 15(1):94-101. PubMed ID: 16322572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfide cross-linking studies of the transmembrane regions of the aspartate sensory receptor of Escherichia coli.
    Lynch BA; Koshland DE
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10402-6. PubMed ID: 1660136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deducing the organization of a transmembrane domain by disulfide cross-linking. The bacterial chemoreceptor Trg.
    Lee GF; Burrows GG; Lebert MR; Dutton DP; Hazelbauer GL
    J Biol Chem; 1994 Nov; 269(47):29920-7. PubMed ID: 7961989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-induced conformational changes in the Bacillus subtilis chemoreceptor McpB determined by disulfide crosslinking in vivo.
    Szurmant H; Bunn MW; Cho SH; Ordal GW
    J Mol Biol; 2004 Dec; 344(4):919-28. PubMed ID: 15544802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of a transmembrane segment in a bacterial chemoreceptor.
    Baumgartner JW; Hazelbauer GL
    J Bacteriol; 1996 Aug; 178(15):4651-60. PubMed ID: 8755897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo.
    Hughson AG; Hazelbauer GL
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11546-51. PubMed ID: 8876172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the transmembrane domain of bacterial chemoreceptors.
    Peach ML; Hazelbauer GL; Lybrand TP
    Protein Sci; 2002 Apr; 11(4):912-23. PubMed ID: 11910034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signalling substitutions in the periplasmic domain of chemoreceptor Trg induce or reduce helical sliding in the transmembrane domain.
    Beel BD; Hazelbauer GL
    Mol Microbiol; 2001 May; 40(4):824-34. PubMed ID: 11401690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersubunit interaction between transmembrane helices of the bacterial aspartate chemoreceptor homodimer.
    Umemura T; Tatsuno I; Shibasaki M; Homma M; Kawagishi I
    J Biol Chem; 1998 Nov; 273(46):30110-5. PubMed ID: 9804765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane organization of the Bacillus subtilis chemoreceptor McpB deduced by cysteine disulfide crosslinking.
    Bunn MW; Ordal GW
    J Mol Biol; 2003 Aug; 331(4):941-9. PubMed ID: 12909020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for transmembrane signalling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking.
    Maruyama IN; Mikawa YG; Maruyama HI
    J Mol Biol; 1995 Nov; 253(4):530-46. PubMed ID: 7473732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis.
    Bass RB; Butler SL; Chervitz SA; Gloor SL; Falke JJ
    Methods Enzymol; 2007; 423():25-51. PubMed ID: 17609126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Hinges in Bacterial Chemoreceptors.
    Akkaladevi N; Bunyak F; Stalla D; White TA; Hazelbauer GL
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies.
    Winston SE; Mehan R; Falke JJ
    Biochemistry; 2005 Sep; 44(38):12655-66. PubMed ID: 16171380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan residues flanking the second transmembrane helix (TM2) set the signaling state of the Tar chemoreceptor.
    Draheim RR; Bormans AF; Lai RZ; Manson MD
    Biochemistry; 2005 Feb; 44(4):1268-77. PubMed ID: 15667220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor. Detection by disulfide trapping.
    Careaga CL; Falke JJ
    J Mol Biol; 1992 Aug; 226(4):1219-35. PubMed ID: 1518053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand occupancy mimicked by single residue substitutions in a receptor: transmembrane signaling induced by mutation.
    Yaghmai R; Hazelbauer GL
    Proc Natl Acad Sci U S A; 1992 Sep; 89(17):7890-4. PubMed ID: 1518809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor.
    Danielson MA; Bass RB; Falke JJ
    J Biol Chem; 1997 Dec; 272(52):32878-88. PubMed ID: 9407066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.