These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 1315315)

  • 1. Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum.
    Marquardt T; Helenius A
    J Cell Biol; 1992 May; 117(3):505-13. PubMed ID: 1315315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP).
    Hurtley SM; Bole DG; Hoover-Litty H; Helenius A; Copeland CS
    J Cell Biol; 1989 Jun; 108(6):2117-26. PubMed ID: 2738090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum.
    Molinari M; Helenius A
    Science; 2000 Apr; 288(5464):331-3. PubMed ID: 10764645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells.
    Molinari M; Helenius A
    Nature; 1999 Nov; 402(6757):90-3. PubMed ID: 10573423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular transport of soluble and membrane-bound glycoproteins: folding, assembly and secretion of anchor-free influenza hemagglutinin.
    Singh I; Doms RW; Wagner KR; Helenius A
    EMBO J; 1990 Mar; 9(3):631-9. PubMed ID: 2178922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope glycoproteins.
    Mulvey M; Brown DT
    J Virol; 1995 Mar; 69(3):1621-7. PubMed ID: 7853497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum.
    Hebert DN; Foellmer B; Helenius A
    Cell; 1995 May; 81(3):425-33. PubMed ID: 7736594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitope tagging of the human endoplasmic reticulum HSP70 protein, BiP, to facilitate analysis of BiP--substrate interactions.
    Murray PJ; Watowich SS; Lodish HF; Young RA; Hilton DJ
    Anal Biochem; 1995 Aug; 229(2):170-9. PubMed ID: 7485969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of influenza hemagglutinin in the endoplasmic reticulum.
    Braakman I; Hoover-Litty H; Wagner KR; Helenius A
    J Cell Biol; 1991 Aug; 114(3):401-11. PubMed ID: 1650370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP.
    Kim PS; Bole D; Arvan P
    J Cell Biol; 1992 Aug; 118(3):541-9. PubMed ID: 1353499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomerization-dependent folding of the membrane fusion protein of Semliki Forest virus.
    Andersson H; Barth BU; Ekström M; Garoff H
    J Virol; 1997 Dec; 71(12):9654-63. PubMed ID: 9371630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum.
    Kuznetsov G; Chen LB; Nigam SK
    J Biol Chem; 1997 Jan; 272(5):3057-63. PubMed ID: 9006956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum.
    Kim PS; Arvan P
    J Cell Biol; 1995 Jan; 128(1-2):29-38. PubMed ID: 7822419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lectin-mediated retention of p62 facilitates p62-E1 heterodimerization in endoplasmic reticulum of Semliki Forest virus-infected cells.
    Andersson H; Garoff H
    J Virol; 2003 Jun; 77(12):6676-82. PubMed ID: 12767987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control.
    Hammond C; Braakman I; Helenius A
    Proc Natl Acad Sci U S A; 1994 Feb; 91(3):913-7. PubMed ID: 8302866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: the role of N-linked glycans and the unfolded protein response.
    de Virgilio M; Kitzmüller C; Schwaiger E; Klein M; Kreibich G; Ivessa NE
    Mol Biol Cell; 1999 Dec; 10(12):4059-73. PubMed ID: 10588643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of the simian virus 5 hemagglutinin-neuraminidase.
    Ng DT; Hiebert SW; Lamb RA
    Mol Cell Biol; 1990 May; 10(5):1989-2001. PubMed ID: 2183015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus.
    Hammond C; Helenius A
    J Cell Biol; 1994 Jul; 126(1):41-52. PubMed ID: 8027184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate-deficient glycoprotein syndrome (CDGS)--glycosylation, folding and intracellular transport of newly synthesized glycoproteins.
    Marquardt T; Ullrich K; Zimmer P; Hasilik A; Deufel T; Harms E
    Eur J Cell Biol; 1995 Mar; 66(3):268-73. PubMed ID: 7774612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different membrane anchors allow the Semliki Forest virus spike subunit E2 to reach the cell surface.
    Riedel H
    J Virol; 1985 Apr; 54(1):224-8. PubMed ID: 2983116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.