BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1315380)

  • 1. Modulation of extracellular gamma-aminobutyric acid in the ventral pallidum using in vivo microdialysis.
    Bourdelais AJ; Kalivas PW
    J Neurochem; 1992 Jun; 58(6):2311-20. PubMed ID: 1315380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAA receptor-mediated K(+)-evoked GABA release from globus pallidus--analysis using microdialysis.
    Hashimoto T; Kuriyama K
    Neurochem Int; 1997 Mar; 30(3):247-52. PubMed ID: 9041555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic modulation of hippocampal glutamatergic neurons: an in vivo microdialysis study.
    Tanaka S; Tsuchida A; Kiuchi Y; Oguchi K; Numazawa S; Yoshida T
    Eur J Pharmacol; 2003 Mar; 465(1-2):61-7. PubMed ID: 12650834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular gamma-aminobutyric acid levels in the rat caudate-putamen: monitoring the neuronal and glial contribution by intracerebral microdialysis.
    Campbell K; Kalén P; Lundberg C; Wictorin K; Rosengren E; Björklund A
    Brain Res; 1993 Jun; 614(1-2):241-50. PubMed ID: 8348317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of GABA release by neurotensin is associated with a reduction of dopamine release in rat nucleus accumbens.
    Tanganelli S; O'Connor WT; Ferraro L; Bianchi C; Beani L; Ungerstedt U; Fuxe K
    Neuroscience; 1994 Jun; 60(3):649-57. PubMed ID: 7936192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of verapamil on GABA and dopamine release does not involve voltage-sensitive calcium channels.
    Sitges M; Chiu LM; Ramón de la Fuente J
    Brain Res; 1990 Nov; 534(1-2):51-9. PubMed ID: 1963566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices.
    Cunningham J; Neal MJ
    Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of luteinizing hormone release by gamma-aminobutyric acid (GABA) agonists: mediation by GABAA-type receptors and activation of chloride and voltage-sensitive calcium channels.
    Virmani MA; Stojilković SS; Catt KJ
    Endocrinology; 1990 May; 126(5):2499-505. PubMed ID: 2158428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the mechanism of release of [3H]GABA from a teleost retina in vitro.
    Jaffé EH; Hernández N; Holder LG
    J Neurochem; 1984 Nov; 43(5):1226-35. PubMed ID: 6491657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute toluene exposure decreases extracellular gamma-aminobutyric acid in the globus pallidus but not in striatum: a microdialysis study in awake, freely moving rats.
    Stengård K; O'Connor WT
    Eur J Pharmacol; 1994 Nov; 292(1):43-6. PubMed ID: 7867689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of gamma-aminobutyric acid and dopamine overflow following acute implantation of a microdialysis probe.
    Drew KL; O'Connor WT; Kehr J; Ungerstedt U
    Life Sci; 1989; 45(14):1307-17. PubMed ID: 2554083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAergic modulation of catecholamine release from cultured bovine adrenal chromaffin cells. Evidence for the involvement of Cl(-)-dependent Ca2+ entry.
    Kitayama S; Morita K; Dohi T; Tsujimoto A
    Naunyn Schmiedebergs Arch Pharmacol; 1990 May; 341(5):419-24. PubMed ID: 1694971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-independent GABA release from striatal slices: the role of calcium channels.
    Bernath S; Zigmond MJ
    Neuroscience; 1990; 36(3):677-82. PubMed ID: 2172861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the possible involvement of protein kinases in the modulation of brain presynaptic sodium channels; comparison with calcium channels.
    Sitges M; Peña F; Chiu LM; Guarneros A
    Neurochem Int; 1998 Feb; 32(2):177-90. PubMed ID: 9580510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA release provoked by disturbed Na(+), K(+) and Ca(2+) homeostasis in cerebellar nerve endings: roles of Ca(2+) channels, Na(+)/Ca(2+) exchangers and GAT1 transporter reversal.
    Romei C; Sabolla C; Raiteri L
    Neurochem Int; 2014 Jun; 72():1-9. PubMed ID: 24726769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased pallidal GABA following reverse microdialysis with clozapine, but not haloperidol.
    See RE; Berglind WJ
    Neuroreport; 2001 Dec; 12(17):3655-8. PubMed ID: 11726768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of voltage- and Ca2+-activated conductances to GABA-induced depolarization in spider mechanosensory neurons.
    Panek I; Höger U; French AS; Torkkeli PH
    J Neurophysiol; 2008 Apr; 99(4):1596-606. PubMed ID: 18216223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of [3H]gamma-aminobutyric acid from glial (Müller) cells of the rat retina: effects of K+, veratridine, and ethylenediamine.
    Sarthy PV
    J Neurosci; 1983 Dec; 3(12):2494-503. PubMed ID: 6655496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of receptors of gamma-aminobutyric acid modulates the release of cholecystokinin-like immunoreactivity from slices of rat neostriatum.
    Conzelmann U; Meyer DK; Sperk G
    Br J Pharmacol; 1986 Dec; 89(4):845-52. PubMed ID: 3028555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina.
    Neal MJ; Shah MA
    Br J Pharmacol; 1989 Sep; 98(1):105-12. PubMed ID: 2804540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.