BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1315500)

  • 1. Energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminal bacterium.
    Van Kessel JS; Russell JB
    Appl Environ Microbiol; 1992 Mar; 58(3):969-75. PubMed ID: 1315500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More monensin-sensitive, ammonia-producing bacteria from the rumen.
    Chen G; Russell JB
    Appl Environ Microbiol; 1989 May; 55(5):1052-7. PubMed ID: 2757371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium.
    Chen G; Russell JB
    Appl Environ Microbiol; 1990 Jul; 56(7):2186-92. PubMed ID: 1975163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminal peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2658-63. PubMed ID: 2604404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of zinc and sodium monensin on ruminal degradation of lysine-HCl and liquid 2-hydroxy-4-methylthiobutanoic acid.
    Bateman HG; Williams CC; Gantt DT; Chung YH; Beem AE; Stanley CC; Goodier GE; Hoyt PG; Ward JD; Bunting LD
    J Dairy Sci; 2004 Aug; 87(8):2571-7. PubMed ID: 15328281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1988 Nov; 54(11):2742-9. PubMed ID: 2975156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of fusobacteria from the rumen that can utilize lysine as an energy source for growth.
    Russell JB
    Anaerobe; 2005 Jun; 11(3):177-84. PubMed ID: 16701548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1991 Jan; 57(1):248-54. PubMed ID: 2036012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen.
    Yang CM; Russell JB
    Appl Environ Microbiol; 1993 Oct; 59(10):3250-4. PubMed ID: 8250552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies of nutrient transport by ruminal bacteria.
    Russell JB; Strobel HJ; Martin SA
    J Dairy Sci; 1990 Oct; 73(10):2996-3012. PubMed ID: 2283425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of basic amino acids by membrane vesicles of Lactococcus lactis.
    Driessen AJ; van Leeuwen C; Konings WN
    J Bacteriol; 1989 Mar; 171(3):1453-8. PubMed ID: 2537818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In rat alveolar macrophages lipopolysaccharides exert divergent effects on the transport of the cationic amino acids L-arginine and L-ornithine.
    Messeri Dreissig MD; Hammermann R; Mössner J; Göthert M; Racké K
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Jun; 361(6):621-8. PubMed ID: 10882037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria.
    Yang CM; Russell JB
    J Anim Sci; 1993 Dec; 71(12):3470-6. PubMed ID: 8294302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on ion flux and protonmotive force.
    Russell JB
    J Anim Sci; 1987 May; 64(5):1519-25. PubMed ID: 3583956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.
    Elwakeel EA; Amachawadi RG; Nour AM; Nasser ME; Nagaraja TG; Titgemeyer EC
    J Dairy Sci; 2013 Jan; 96(1):495-505. PubMed ID: 23141820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting lysine degradation by ruminal fusobacteria.
    Russell JB
    FEMS Microbiol Ecol; 2006 Apr; 56(1):18-24. PubMed ID: 16542401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic amino acid transport in Escherichia coli: properties of canavanine-resistant mutants.
    Rosen BP
    J Bacteriol; 1973 Nov; 116(2):627-35. PubMed ID: 4583244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monensin and pH on the production and utilization of pyro-glutamate, a novel product of ruminal glutamine deamination.
    Russell JB; Chen GJ
    J Anim Sci; 1989 Sep; 67(9):2370-6. PubMed ID: 2599979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.