These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1315500)

  • 1. Energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminal bacterium.
    Van Kessel JS; Russell JB
    Appl Environ Microbiol; 1992 Mar; 58(3):969-75. PubMed ID: 1315500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More monensin-sensitive, ammonia-producing bacteria from the rumen.
    Chen G; Russell JB
    Appl Environ Microbiol; 1989 May; 55(5):1052-7. PubMed ID: 2757371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium.
    Chen G; Russell JB
    Appl Environ Microbiol; 1990 Jul; 56(7):2186-92. PubMed ID: 1975163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminal peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2658-63. PubMed ID: 2604404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of zinc and sodium monensin on ruminal degradation of lysine-HCl and liquid 2-hydroxy-4-methylthiobutanoic acid.
    Bateman HG; Williams CC; Gantt DT; Chung YH; Beem AE; Stanley CC; Goodier GE; Hoyt PG; Ward JD; Bunting LD
    J Dairy Sci; 2004 Aug; 87(8):2571-7. PubMed ID: 15328281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1988 Nov; 54(11):2742-9. PubMed ID: 2975156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of fusobacteria from the rumen that can utilize lysine as an energy source for growth.
    Russell JB
    Anaerobe; 2005 Jun; 11(3):177-84. PubMed ID: 16701548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1991 Jan; 57(1):248-54. PubMed ID: 2036012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen.
    Yang CM; Russell JB
    Appl Environ Microbiol; 1993 Oct; 59(10):3250-4. PubMed ID: 8250552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies of nutrient transport by ruminal bacteria.
    Russell JB; Strobel HJ; Martin SA
    J Dairy Sci; 1990 Oct; 73(10):2996-3012. PubMed ID: 2283425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of basic amino acids by membrane vesicles of Lactococcus lactis.
    Driessen AJ; van Leeuwen C; Konings WN
    J Bacteriol; 1989 Mar; 171(3):1453-8. PubMed ID: 2537818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In rat alveolar macrophages lipopolysaccharides exert divergent effects on the transport of the cationic amino acids L-arginine and L-ornithine.
    Messeri Dreissig MD; Hammermann R; Mössner J; Göthert M; Racké K
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Jun; 361(6):621-8. PubMed ID: 10882037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria.
    Yang CM; Russell JB
    J Anim Sci; 1993 Dec; 71(12):3470-6. PubMed ID: 8294302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on ion flux and protonmotive force.
    Russell JB
    J Anim Sci; 1987 May; 64(5):1519-25. PubMed ID: 3583956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.
    Elwakeel EA; Amachawadi RG; Nour AM; Nasser ME; Nagaraja TG; Titgemeyer EC
    J Dairy Sci; 2013 Jan; 96(1):495-505. PubMed ID: 23141820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting lysine degradation by ruminal fusobacteria.
    Russell JB
    FEMS Microbiol Ecol; 2006 Apr; 56(1):18-24. PubMed ID: 16542401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic amino acid transport in Escherichia coli: properties of canavanine-resistant mutants.
    Rosen BP
    J Bacteriol; 1973 Nov; 116(2):627-35. PubMed ID: 4583244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monensin and pH on the production and utilization of pyro-glutamate, a novel product of ruminal glutamine deamination.
    Russell JB; Chen GJ
    J Anim Sci; 1989 Sep; 67(9):2370-6. PubMed ID: 2599979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.