These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 131554)
1. Role of Mg2+ ions in the subunit structure and membrane binding properties of bacterial energy transducing ATPase. Abrams A; Jensen C; Morris DH Biochem Biophys Res Commun; 1976 Apr; 69(3):804-11. PubMed ID: 131554 [No Abstract] [Full Text] [Related]
2. The isolation of bacterial membrane ATPase and nectin. Abrams A; Baron C; Schnebli HP Methods Enzymol; 1974; 32():428-39. PubMed ID: 4280489 [No Abstract] [Full Text] [Related]
3. Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity. Muñoz E Biochim Biophys Acta; 1982 May; 650(4):233-65. PubMed ID: 6178434 [No Abstract] [Full Text] [Related]
4. Release of the component of Streptococcus faecalis Na(+)-ATPase from the membranes. Kakinuma Y; Igarashi K FEBS Lett; 1990 Oct; 271(1-2):102-5. PubMed ID: 2146151 [TBL] [Abstract][Full Text] [Related]
5. Structure and function of chloroplast ATPase. Nelson N Biochim Biophys Acta; 1976 Nov; 456(3-4):314-38. PubMed ID: 136996 [No Abstract] [Full Text] [Related]
6. Purification of the ATPase of Streptococcus faecalis. Solioz M; Fürst P Methods Enzymol; 1988; 157():680-9. PubMed ID: 2852757 [No Abstract] [Full Text] [Related]
7. The effect of the Ca2+/Mg2+ concentration ratio on placental (Ca2+-Mg2+)-ATPase activity. Shami Y; Radde IC Biochim Biophys Acta; 1972 Feb; 255(2):675-9. PubMed ID: 4257995 [No Abstract] [Full Text] [Related]
8. Coupling factor adenosine triphosphatase-complex of Rhodospirillum rubrum. Isolation of an oligomycin-sensitive Ca2+, Mg2+--ATPase. Oren R; Gromet-Elhanan Z FEBS Lett; 1977 Jul; 79(1):147-50. PubMed ID: 142656 [No Abstract] [Full Text] [Related]
9. Cellular incorporation of 32 P-orthophosphate into the membrane ATPase of Streptococcus faecalis. Abrams A; Nolan EA Biochem Biophys Res Commun; 1972 Aug; 48(4):982-9. PubMed ID: 4264157 [No Abstract] [Full Text] [Related]
10. Energy transduction in Escherichia coli. The role of the Mg2+ATPase. Tsuchiya T; Rosen BP J Biol Chem; 1975 Nov; 250(21):8409-15. PubMed ID: 127791 [TBL] [Abstract][Full Text] [Related]
17. Effects of ATP and magnesium ions on the fluorescence of harmala alkaloids. Restrictions for the use of harmala alkaloids as fluorescent probes for (Na+ + K+)-ATPase. Charnock JS; Bashford CL; Ellory JC Biochim Biophys Acta; 1976 Jun; 436(2):413-23. PubMed ID: 132195 [TBL] [Abstract][Full Text] [Related]
18. Purification and properties of ATPase from the cytoplasmic membrane of Bacillus megaterium KM. Mirsky R; Barlow V Biochim Biophys Acta; 1971 Sep; 241(3):835-45. PubMed ID: 4258592 [No Abstract] [Full Text] [Related]
19. Carbodiimide-resistant membrane adenosine triphosphatase in mutants of Streptococcus faecalis. I. Studies of the mechanism of resistance. Abrams A; Smith JB; Baron C J Biol Chem; 1972 Mar; 247(5):1484-8. PubMed ID: 4258940 [No Abstract] [Full Text] [Related]
20. Inhibition of human red cell Nak-ATPase by magnesium and potassium. Bond GH; Hudgins PM Biochem Biophys Res Commun; 1975 Sep; 66(2):645-50. PubMed ID: 126686 [No Abstract] [Full Text] [Related] [Next] [New Search]