BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1315574)

  • 1. Effect of dimethyl sulfoxide on phosphoryl transfer catalyzed by yeast hexokinase.
    Montero-Lomelí M
    Biochim Biophys Acta; 1992 Apr; 1120(3):305-7. PubMed ID: 1315574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the active site of yeast hexokinase. Specific phosphorylation of a serine residue induced by D-xylose and ATPMg.
    Menezes LC; Pudles J
    Eur J Biochem; 1976 May; 65(1):41-7. PubMed ID: 6282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of yeast hexokinase PI in complex with glucose: A classical "induced fit" example revised.
    Kuser P; Cupri F; Bleicher L; Polikarpov I
    Proteins; 2008 Aug; 72(2):731-40. PubMed ID: 18260108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimethyl sulfoxide: a possible effect on the interconversion of phosphorylated forms of Na+,K(+)-ATPase.
    de Moraes VL
    Biochim Biophys Acta; 1990 Jul; 1026(2):135-40. PubMed ID: 2165812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of inactivation of hexokinase PII of Saccharomyces cerevisiae by D-xylose.
    Fernández R; Herrero P; Fernández MT; Moreno F
    J Gen Microbiol; 1986 Dec; 132(12):3467-72. PubMed ID: 3309137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific phosphorylation of yeast hexokinase induced by xylose and ATPMg. Properties of the phosphorylated form of the enzyme.
    Menezes LC; Pudles J
    Arch Biochem Biophys; 1977 Jan; 178(1):34-42. PubMed ID: 319758
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidative phosphorylation and the Pi-ATP exchange reaction of submitochondrial particles under the influence of organic solvents.
    Tuena de Gómez-Puyou M; Ayala G; Darszon A; Gómez-Puyou A
    J Biol Chem; 1984 Aug; 259(15):9472-8. PubMed ID: 6746656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the weakly acidic uncoupler 2,4-dinitrophenol and dimethyl sulfoxide on the coordination of Mg2+ with ATP. Possible mechanism of activation of the isolated F1-ATPase by 2,4-dinitrophenol.
    Shinohara Y; Yoshikawa K; Terada H
    Biophys Chem; 1990 Aug; 36(3):201-8. PubMed ID: 2149660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerization in the actin ATPase clan regulates hexokinase activity in yeast.
    Stoddard PR; Lynch EM; Farrell DP; Dosey AM; DiMaio F; Williams TA; Kollman JM; Murray AW; Garner EC
    Science; 2020 Feb; 367(6481):1039-1042. PubMed ID: 32108112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition and inactivation of glucose-phosphorylating enzymes from Saccharomyces cerevisiae by D-xylose.
    Fernández R; Herrero P; Moreno F
    J Gen Microbiol; 1985 Oct; 131(10):2705-9. PubMed ID: 3906028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stereochemical course of yeast hexokinase-catalysed phosphoryl transfer by using adenosine 5'[gamma(S)-16O,17O,18O]triphosphate as substrate.
    Lowe G; Potter BV
    Biochem J; 1981 Oct; 199(1):227-33. PubMed ID: 7039616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase.
    Petersen RL; Gupta BK
    Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophosphorylation of yeast hexokinase PII.
    Fernández R; Herrero P; Fernández E; Fernández T; López-Boado YS; Moreno F
    J Gen Microbiol; 1988 Sep; 134(9):2493-8. PubMed ID: 3076185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii.
    Nishimasu H; Fushinobu S; Shoun H; Wakagi T
    J Biol Chem; 2007 Mar; 282(13):9923-9931. PubMed ID: 17229727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression.
    Kraakman LS; Winderickx J; Thevelein JM; De Winde JH
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):159-68. PubMed ID: 10493925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of crystalline hexokinase from yeast. II. Studies on ATP-enzyme interaction.
    TRAYSER KA; COLOWICK SP
    Arch Biochem Biophys; 1961 Jul; 94():161-8. PubMed ID: 13777945
    [No Abstract]   [Full Text] [Related]  

  • 17. Specific inactivation of yeast hexokinase induced by xylose in the presence of a phosphoryl donor substrate.
    DelaFuente G
    Eur J Biochem; 1970 Oct; 16(2):240-3. PubMed ID: 5471812
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanism of phosphoryl transfer by hexokinase.
    Rose IA
    Biochem Biophys Res Commun; 1980 May; 94(2):573-8. PubMed ID: 6994724
    [No Abstract]   [Full Text] [Related]  

  • 19. The high resolution crystal structure of yeast hexokinase PII with the correct primary sequence provides new insights into its mechanism of action.
    Kuser PR; Krauchenco S; Antunes OA; Polikarpov I
    J Biol Chem; 2000 Jul; 275(27):20814-21. PubMed ID: 10749890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural dynamics of yeast hexokinase during catalysis.
    Steitz TA; Shoham M; Bennett WS
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):43-52. PubMed ID: 6115422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.