BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1315657)

  • 1. Accumulation of calcium by normal and dystrophin-deficient mouse muscle during contractile activity in vitro.
    McArdle A; Edwards RH; Jackson MJ
    Clin Sci (Lond); 1992 Apr; 82(4):455-9. PubMed ID: 1315657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of contractile activity on muscle damage in the dystrophin-deficient mdx mouse.
    McArdle A; Edwards RH; Jackson MJ
    Clin Sci (Lond); 1991 Apr; 80(4):367-71. PubMed ID: 1851074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the normal content of sulfhydryl groups attributable to sparing from dystrophic pathology in dystrophin-deficient muscles?
    Niebrój-Dobosz I; Fidziańska A; Glinka Z; Hausmanowa-Petrusewicz I
    Folia Neuropathol; 2002; 40(3):143-50. PubMed ID: 12572920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.
    Mueller GM; O'Day T; Watchko JF; Ontell M
    Hum Gene Ther; 2002 Jun; 13(9):1081-90. PubMed ID: 12067441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in muscle calcium content in dystrophin-deficient mdx mice.
    Reeve JL; McArdle A; Jackson MJ
    Muscle Nerve; 1997 Mar; 20(3):357-60. PubMed ID: 9052816
    [No Abstract]   [Full Text] [Related]  

  • 6. Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice.
    Gailly P; Boland B; Himpens B; Casteels R; Gillis JM
    Cell Calcium; 1993 Jun; 14(6):473-83. PubMed ID: 8358771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostaglandin metabolism in dystrophin-deficient MDX mouse muscle.
    McArdle A; Foxley A; Edwards RH; Jackson MJ
    Biochem Soc Trans; 1991 Apr; 19(2):177S. PubMed ID: 1889562
    [No Abstract]   [Full Text] [Related]  

  • 8. Long-term study of Ca(2+) homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice.
    De Backer F; Vandebrouck C; Gailly P; Gillis JM
    J Physiol; 2002 Aug; 542(Pt 3):855-65. PubMed ID: 12154184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers.
    Tutdibi O; Brinkmeier H; Rüdel R; Föhr KJ
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):859-68. PubMed ID: 10066910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDGF-receptor concentration is elevated in regenerative muscle fibers in dystrophin-deficient muscle.
    Tidball JG; Spencer MJ; St Pierre BA
    Exp Cell Res; 1992 Nov; 203(1):141-9. PubMed ID: 1426037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myotubes from transgenic mdx mice expressing full-length dystrophin show normal calcium regulation.
    Denetclaw WF; Hopf FW; Cox GA; Chamberlain JS; Steinhardt RA
    Mol Biol Cell; 1994 Oct; 5(10):1159-67. PubMed ID: 7865881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle.
    Spencer MJ; Tidball JG
    Exp Cell Res; 1992 Nov; 203(1):107-14. PubMed ID: 1426033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mdx myotubes have normal excitability but show reduced contraction-relaxation dynamics.
    Nicolas-Metral V; Raddatz E; Kucera P; Ruegg UT
    J Muscle Res Cell Motil; 2001; 22(1):69-75. PubMed ID: 11563551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice.
    Head SI
    J Physiol; 1993 Sep; 469():11-9. PubMed ID: 8271194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of changes in plasma membrane permeability in the dystrophin-deficient mdx mouse.
    McArdle A; Edwards RH; Jackson MJ
    Muscle Nerve; 1994 Dec; 17(12):1378-84. PubMed ID: 7969238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired mitochondrial oxidative phosphorylation in skeletal muscle of the dystrophin-deficient mdx mouse.
    Kuznetsov AV; Winkler K; Wiedemann FR; von Bossanyi P; Dietzmann K; Kunz WS
    Mol Cell Biochem; 1998 Jun; 183(1-2):87-96. PubMed ID: 9655182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile function and low-intensity exercise effects of old dystrophic (mdx) mice.
    Hayes A; Williams DA
    Am J Physiol; 1998 Apr; 274(4):C1138-44. PubMed ID: 9575811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced expression of regucalcin in young and aged mdx diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient muscle.
    Doran P; Dowling P; Donoghue P; Buffini M; Ohlendieck K
    Biochim Biophys Acta; 2006 Apr; 1764(4):773-85. PubMed ID: 16483859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle.
    Turner PR; Schultz R; Ganguly B; Steinhardt RA
    J Membr Biol; 1993 May; 133(3):243-51. PubMed ID: 8392585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.
    Miyazaki D; Nakamura A; Fukushima K; Yoshida K; Takeda S; Ikeda S
    Hum Mol Genet; 2011 May; 20(9):1787-99. PubMed ID: 21320869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.