These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1315846)

  • 1. Synaptic connections between nonspiking afferent neurons and motor neurons underlying phase-dependent reflexes in crayfish.
    Skorupski P
    J Neurophysiol; 1992 Mar; 67(3):664-79. PubMed ID: 1315846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Octopamine induces steady-state reflex reversal in crayfish thoracic ganglia.
    Skorupski P
    J Neurophysiol; 1996 Jul; 76(1):93-108. PubMed ID: 8836212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity and central modulation of feedback reflexes in crayfish motor pool.
    Skorupski P; Rawat BM; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):648-63. PubMed ID: 1578250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus.
    Skorupski P; Sillar KT
    J Neurophysiol; 1986 Apr; 55(4):689-95. PubMed ID: 3701401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.
    Elson RC; Sillar KT; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia.
    Sillar KT; Skorupski P
    J Neurophysiol; 1986 Apr; 55(4):678-88. PubMed ID: 3701400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel reflex and central control of promotor and receptor motoneurons in crayfish.
    Skorupski P; Bush BM
    Proc Biol Sci; 1992 Jul; 249(1324):7-12. PubMed ID: 1359550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of spontaneous and reflex activity of crayfish leg motor neurons by octopamine and serotonin.
    Gill MD; Skorupski P
    J Neurophysiol; 1996 Nov; 76(5):3535-49. PubMed ID: 8930291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish.
    Le Ray D; Cattaert D
    J Neurophysiol; 1997 Apr; 77(4):1963-78. PubMed ID: 9114248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Descending control of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish.
    Namba H; Nagayama T; Hisada M
    J Neurophysiol; 1994 Jul; 72(1):235-47. PubMed ID: 7965008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. II. Integration Of sensory inputs in motor neurons.
    Le Ray D; Clarac F; Cattaert D
    J Neurophysiol; 1997 Dec; 78(6):3144-53. PubMed ID: 9405534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. I. Multisensory coding and motor neuron monosynaptic responses.
    Le Ray D; Clarac F; Cattaert D
    J Neurophysiol; 1997 Dec; 78(6):3133-43. PubMed ID: 9405533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INTEGRATION OF POSITIVE AND NEGATIVE FEEDBACK LOOPS IN A CRAYFISH MUSCLE.
    Skorupski P; Vescovi P; Bush B
    J Exp Biol; 1994 Feb; 187(1):305-13. PubMed ID: 9317858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanoafferent neurons innervating tail of Aplysia. I. Response properties and synaptic connections.
    Walters ET; Byrne JH; Carew TJ; Kandel ER
    J Neurophysiol; 1983 Dec; 50(6):1522-42. PubMed ID: 6663341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifiability of spinal synapses.
    Mendell LM
    Physiol Rev; 1984 Jan; 64(1):260-324. PubMed ID: 6320234
    [No Abstract]   [Full Text] [Related]  

  • 16. Synaptic interactions between nonspiking local interneurones in the terminal abdominal ganglion of the crayfish.
    Namba H; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Aug; 190(8):615-22. PubMed ID: 15067558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitatory connections of nonspiking interneurones in the terminal abdominal ganglion of the crayfish.
    Namba H; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Aug; 201(8):773-81. PubMed ID: 26038269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active motor neurons potentiate their own sensory inputs via glutamate-induced long-term potentiation.
    Le Ray D; Cattaert D
    J Neurosci; 1999 Feb; 19(4):1473-83. PubMed ID: 9952423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent regulation of sensory-motor transmission: role of muscarinic receptors in sensory-motor integration in the crayfish walking system.
    Le Bon-Jego M; Masante-Roca I; Cattaert D
    Eur J Neurosci; 2006 Mar; 23(5):1283-300. PubMed ID: 16553790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic inhibition: the mechanism of protection from habituation of the crayfish lateral giant fibre escape response.
    Bryan JS; Krasne FB
    J Physiol; 1977 Oct; 271(2):369-90. PubMed ID: 200735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.