These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1315846)

  • 41. Convergent chemical and electrical synaptic inputs from proprioceptive afferents onto an identified intersegmental interneuron in the crayfish.
    Nagayama T; Aonuma H; Newland PL
    J Neurophysiol; 1997 May; 77(5):2826-30. PubMed ID: 9163396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. During fictive locomotion, graded synaptic currents drive bursts of impulses in swimmeret motor neurons.
    Mulloney B
    J Neurosci; 2003 Jul; 23(13):5953-62. PubMed ID: 12843300
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Presynaptic inhibition: primary afferent depolarization in crayfish neurons.
    Kennedy D; Calabrese RL; Wine JJ
    Science; 1974 Nov; 186(4162):451-4. PubMed ID: 4370280
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex.
    Burke D; Gandevia SC; McKeon B
    J Neurophysiol; 1984 Sep; 52(3):435-48. PubMed ID: 6090608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protection from habituation of the crayfish lateral giant fibre escape response.
    Bryan JS; Krasne FB
    J Physiol; 1977 Oct; 271(2):351-68. PubMed ID: 200734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Linear integration of convergent visual inputs in an oculomotor reflex pathway.
    Glantz RM; Nudelman HB; Waldrop B
    J Neurophysiol; 1984 Dec; 52(6):1213-25. PubMed ID: 6097654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Postembryonic development of rectifying electrical synapses in crayfish: physiology.
    Heitler WJ; Pitman RM; Cobb JL; Leitch B
    J Neurocytol; 1991 Feb; 20(2):109-23. PubMed ID: 1851213
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sacculocollic reflex arcs in cats.
    Uchino Y; Sato H; Sasaki M; Imagawa M; Ikegami H; Isu N; Graf W
    J Neurophysiol; 1997 Jun; 77(6):3003-12. PubMed ID: 9212252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonspiking and spiking proprioceptors in the crab: nonlinear analysis of nonspiking TCMRO afferents.
    DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1826-36. PubMed ID: 12611947
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spiking local interneurons as primary integrators of mechanosensory information in the locust.
    Siegler MV; Burrows M
    J Neurophysiol; 1983 Dec; 50(6):1281-95. PubMed ID: 6663326
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distributions of EPSP latency at different group Ia-fiber-alpha-motoneuron connections.
    Cope TC; Mendell LM
    J Neurophysiol; 1982 Mar; 47(3):469-78. PubMed ID: 6279789
    [No Abstract]   [Full Text] [Related]  

  • 52. Graded synaptic interactions between local premotor interneurons of the locust.
    Burrows M
    J Neurophysiol; 1979 Jul; 42(4):1108-23. PubMed ID: 225447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensory feedback and central afferent interaction in the muscle receptor organ of the crab, Carcinus maenas.
    Wildman M; Cannone A
    J Neurophysiol; 1996 Aug; 76(2):788-98. PubMed ID: 8871199
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synaptic input from homonymous group I afferents in m. longissimus lumborum motoneurons in the L4 spinal segment in cats.
    Akatani J; Kanda K; Wada N
    Exp Brain Res; 2004 Jun; 156(3):396-8. PubMed ID: 15118795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sustained membrane potential change of uropod motor neurons during the fictive abdominal posture movement in crayfish.
    Takahata M; Hisada M
    J Neurophysiol; 1986 Sep; 56(3):702-17. PubMed ID: 3783216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro.
    Thompson SW; Woolf CJ; Sivilotti LG
    J Neurophysiol; 1993 Jun; 69(6):2116-28. PubMed ID: 8350135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Primary afferent depolarizations of sensory origin within contact-sensitive mechanoreceptive afferents of a crayfish leg.
    Marchand AR; Barnes WJ; Cattaert D
    J Neurophysiol; 1997 Jun; 77(6):3340-54. PubMed ID: 9212279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of postural motoneuron activity in crayfish abdomen. II. Coordination by excitatory and inhibitory connections between motoneurons.
    Tatton WG; Sokolove PG
    J Neurophysiol; 1975 Mar; 38(2):332-46. PubMed ID: 165271
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic transmission between single tactile and kinaesthetic sensory nerve fibers and their central target neurones.
    Rowe MJ
    Behav Brain Res; 2002 Sep; 135(1-2):197-212. PubMed ID: 12356451
    [TBL] [Abstract][Full Text] [Related]  

  • 60. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G757-63. PubMed ID: 18202107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.