These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1315846)

  • 61. Cooperativity-dependent long-lasting potentiation in the crayfish lateral giant escape reaction circuit.
    Miller MW; Lee SC; Krasne FB
    J Neurosci; 1987 Apr; 7(4):1081-92. PubMed ID: 3572475
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interaction between afferent neurones in a crab muscle receptor organ.
    Wildman MH; Cannone AJ
    Brain Res; 1991 Nov; 565(1):175-8. PubMed ID: 1773354
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Convergence of parallel sensory channels on crayfish claw motor neurons. Changing firing probabilities and synaptic effects of simultaneously monitored proprioceptors.
    Lindsey BG; Brown HK
    J Neurophysiol; 1982 Jun; 47(6):1144-59. PubMed ID: 7108576
    [No Abstract]   [Full Text] [Related]  

  • 64. Intersegmental reflex coordination by a single joint receptor organ (CB) in rock lobster walking legs.
    Clarac F; Vedel JP; Bush BM
    J Exp Biol; 1978 Apr; 73():29-46. PubMed ID: 650148
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Haltere afferents provide direct, electrotonic input to a steering motor neuron in the blowfly, Calliphora.
    Fayyazuddin A; Dickinson MH
    J Neurosci; 1996 Aug; 16(16):5225-32. PubMed ID: 8756451
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Monosynaptic Interjoint Reflexes and their Central Modulation During Fictive Locomotion in Crayfish.
    El Manira A; DiCaprio RA; Cattaert D; Clarac F
    Eur J Neurosci; 1991; 3(12):1219-1231. PubMed ID: 12106221
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of habituation in the crayfish due to selective weakening of electrical synapses.
    Fricke RA
    Brain Res; 1984 Nov; 322(1):139-43. PubMed ID: 6097333
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Postural changes alter synaptic interactions between nonspiking interneurons and motor neurons of the locust.
    Siegler MV
    J Neurophysiol; 1981 Aug; 46(2):310-23. PubMed ID: 6267215
    [No Abstract]   [Full Text] [Related]  

  • 69. Serotonin enhances the resistance reflex of the locomotor network of the crayfish through multiple modulatory effects that act cooperatively.
    Le Bon-Jego M; Cattaert D; Pearlstein E
    J Neurosci; 2004 Jan; 24(2):398-411. PubMed ID: 14724238
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Local inhibitor of the crayfish telson-flexor motor giant neurons: morphology and physiology.
    Kirk MD; Dumont JP; Wine JJ
    J Comp Physiol A; 1986 Jan; 158(1):69-79. PubMed ID: 3723430
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Antagonistic effects of phentolamine and octopamine on rhythmic motor output of crayfish thoracic ganglia.
    Gill MD; Skorupski P
    J Neurophysiol; 1999 Dec; 82(6):3586-9. PubMed ID: 10601485
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analysis of postural motoneuron activity in crayfish abdomen. I. Coordination by premotoneuron connections.
    Sokolove PG; Tatton WG
    J Neurophysiol; 1975 Mar; 38(2):313-31. PubMed ID: 165270
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Inking in Aplysia californica. III. Two different synaptic conductance mechanisms for triggering central program for inking.
    Carew TJ; Kandel ER
    J Neurophysiol; 1977 May; 40(3):721-34. PubMed ID: 195019
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Central nervous control of excitatory and inhibitory neurons of opener muscle of the crayfish claw.
    Smith DO
    J Neurophysiol; 1974 Jan; 37(1):108-18. PubMed ID: 4811971
    [No Abstract]   [Full Text] [Related]  

  • 75. Directionally selective motion detection in the sustaining fibers of the crayfish optic nerve: linear and nonlinear mechanisms.
    Glantz RM; Wyatt C; Mahncke H
    J Neurophysiol; 1995 Jul; 74(1):142-52. PubMed ID: 7472319
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interactions among an ensemble of chordotonal organ receptors and motor neurons of the crayfish claw.
    Lindsey BG; Gerstein GL
    J Neurophysiol; 1979 Mar; 42(2):383-99. PubMed ID: 422971
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The paraneuronal nature of neurons: nonspiking communication in the crayfish central nervous system.
    Hisada M
    Arch Histol Cytol; 1989; 52 Suppl():139-46. PubMed ID: 2510779
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Neural circuit mediating tentacle withdrawal in Helix aspersa, with specific reference to the competence of the motor neuron C3.
    Prescott SA; Gill N; Chase R
    J Neurophysiol; 1997 Dec; 78(6):2951-65. PubMed ID: 9405515
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Axon conduction block: differential channeling of nerve impulses in the crayfish.
    Hatt H; Smith DO
    Brain Res; 1975 Apr; 87(1):85-8. PubMed ID: 164263
    [No Abstract]   [Full Text] [Related]  

  • 80. Electrical coupling of mechanoreceptor afferents in the crayfish: a possible mechanism for enhancement of sensory signal transmission.
    el Manira A; Cattaert D; Wallén P; DiCaprio RA; Clarac F
    J Neurophysiol; 1993 Jun; 69(6):2248-51. PubMed ID: 8394415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.