These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1315957)

  • 1. Modifications of the E.coli Lac repressor for expression in eukaryotic cells: effects of nuclear signal sequences on protein activity and nuclear accumulation.
    Fieck A; Wyborski DL; Short JM
    Nucleic Acids Res; 1992 Apr; 20(7):1785-91. PubMed ID: 1315957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimer-to-tetramer assembly of Lac repressor involves a leucine heptad repeat.
    Alberti S; Oehler S; von Wilcken-Bergmann B; Krämer H; Müller-Hill B
    New Biol; 1991 Jan; 3(1):57-62. PubMed ID: 2039767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the Escherichia coli lac repressor to the mammalian cell nucleus.
    Hu MC; Davidson N
    Gene; 1991 Mar; 99(2):141-50. PubMed ID: 2022328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of the lac repressor into an allosterically regulated transcriptional activator for mammalian cells.
    Labow MA; Baim SB; Shenk T; Levine AJ
    Mol Cell Biol; 1990 Jul; 10(7):3343-56. PubMed ID: 2162473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated expression of nuclear genes by T3 RNA polymerase and lac repressor, using recombinant vaccinia virus vectors.
    Rodriguez D; Zhou YW; Rodriguez JR; Durbin RK; Jimenez V; McAllister WT; Esteban M
    J Virol; 1990 Oct; 64(10):4851-7. PubMed ID: 2204724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nuclear location signal.
    Smith AE; Kalderon D; Roberts BL; Colledge WH; Edge M; Gillett P; Markham A; Paucha E; Richardson WD
    Proc R Soc Lond B Biol Sci; 1985 Oct; 226(1242):43-58. PubMed ID: 2866523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. beta-Galactosidase chimeras: primary structure of a lac repressor-beta-galactosidase protein.
    Brake AJ; Fowler AV; Zabin I; Kania J; Müller-Hill B
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4824-7. PubMed ID: 105358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fos leucine zipper variants with increased association capacity.
    Porte D; Oertel-Buchheit P; Granger-Schnarr M; Schnarr M
    J Biol Chem; 1995 Sep; 270(39):22721-30. PubMed ID: 7559397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation and transactivation suppressor activity of the c-Jun leucine zipper fused to a bacterial repressor.
    Granger-Schnarr M; Benusiglio E; Schnarr M; Sassone-Corsi P
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4236-9. PubMed ID: 1584758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of tetramerization domains in vivo by cooperative DNA binding to tandem lambda operator sites.
    Zeng X; Hu JC
    Gene; 1997 Feb; 185(2):245-9. PubMed ID: 9055822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameters affecting the use of the lac repressor system in eukaryotic cells and transgenic animals.
    Wyborski DL; DuCoeur LC; Short JM
    Environ Mol Mutagen; 1996; 28(4):447-58. PubMed ID: 8991077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular targets for SV40 large T-antigen.
    Lane DP; Simanis V; Bartsch R; Yewdell J; Gannon J; Mole S
    Proc R Soc Lond B Biol Sci; 1985 Oct; 226(1242):25-42. PubMed ID: 2415984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-inducible expression of a recombinant fusion protein by Escherichia coli lac repressor mutants.
    Yabuta M; Onai-Miura S; Ohsuye K
    J Biotechnol; 1995 Feb; 39(1):67-73. PubMed ID: 7766012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear accumulation of Saccharomyces cerevisiae Mcm3 is dependent on its nuclear localization sequence.
    Young MR; Suzuki K; Yan H; Gibson S; Tye BK
    Genes Cells; 1997 Oct; 2(10):631-43. PubMed ID: 9427284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.
    Tungtur S; Egan SM; Swint-Kruse L
    Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon.
    Abo T; Inada T; Ogawa K; Aiba H
    EMBO J; 2000 Jul; 19(14):3762-9. PubMed ID: 10899129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-hybrid system for characterization of protein-protein interactions in E. coli.
    Hays LB; Chen YS; Hu JC
    Biotechniques; 2000 Aug; 29(2):288-90, 292, 294 passim. PubMed ID: 10948430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif.
    Haren L; Normand C; Polard P; Alazard R; Chandler M
    J Mol Biol; 2000 Feb; 296(3):757-68. PubMed ID: 10677279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the human T-cell receptor V beta 5.3 in Escherichia coli by thermal induction of the trc promoter: nucleotide sequence of the lacIts gene.
    Adari H; Andrews B; Ford PJ; Hannig G; Brosius J; Makrides SC
    DNA Cell Biol; 1995 Nov; 14(11):945-50. PubMed ID: 7576181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements.
    Liu HS; Scrable H; Villaret DB; Lieberman MA; Stambrook PJ
    Cancer Res; 1992 Feb; 52(4):983-9. PubMed ID: 1737361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.