BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1316115)

  • 1. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical.
    Suda I; Takahashi H
    Arch Toxicol; 1992; 66(1):34-9. PubMed ID: 1316115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of methyl and ethyl mercury into inorganic mercury by oxygen free radical-producing systems: involvement of hydroxyl radical.
    Suda I; Totoki S; Takahashi H
    Arch Toxicol; 1991; 65(2):129-34. PubMed ID: 1647758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells.
    Suda I; Totoki S; Uchida T; Takahashi H
    Arch Toxicol; 1992; 66(1):40-4. PubMed ID: 1316116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light.
    Suda I; Suda M; Hirayama K
    Arch Toxicol; 1993; 67(5):365-8. PubMed ID: 8368946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of methyl and ethyl mercury into inorganic mercury by hydroxyl radical produced from rat liver microsomes.
    Suda I; Hirayama K
    Arch Toxicol; 1992; 66(6):398-402. PubMed ID: 1332650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organic mercury compounds, methylmercury and ethylmercury, inhibited ciliary movement of ventricular ependymal cells in the mouse brain around the concentrations reported for human poisoning.
    Yoshida S; Matsumoto S; Kanchika T; Hagiwara T; Minami T
    Neurotoxicology; 2016 Dec; 57():69-74. PubMed ID: 27620881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1).
    Mailloux RJ; Yumvihoze E; Chan HM
    Chem Biol Interact; 2015 Sep; 239():46-55. PubMed ID: 26111762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of myocardial dihydrolipoamide dehydrogenase by myeloperoxidase systems: effect of halides, nitrite and thiol compounds.
    Gutierrez-Correa J; Stoppani AO
    Free Radic Res; 1999 Feb; 30(2):105-17. PubMed ID: 10193578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate.
    Saari H; Konttinen YT; Friman C; Sorsa T
    Inflammation; 1993 Aug; 17(4):403-15. PubMed ID: 8406685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short exposure to ethyl and methylmercury prompts similar toxic responses in Drosophila melanogaster.
    Wildner G; Loreto JS; de Almeida P; Claro MT; Ferreira SA; Barbosa NV
    Comp Biochem Physiol C Toxicol Pharmacol; 2022 Feb; 252():109216. PubMed ID: 34710619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of Trypanosoma cruzi dihydrolipoamide dehydrogenase by leukocyte myeloperoxidase systems: role of hypochloride and nitrite related radicals.
    Gutiérrez-Correa J; Krauth-Siegel RL; Stoppani AO
    Rev Argent Microbiol; 2000; 32(3):136-43. PubMed ID: 11008705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous determination of methylmercury and ethylmercury in rice by capillary gas chromatography coupled on-line with atomic fluorescence spectrometry.
    Shi JB; Liang LN; Jiang GB
    J AOAC Int; 2005; 88(2):665-9. PubMed ID: 15859094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl and Ethylmercury elicit oxidative stress and unbalance the antioxidant system in Saccharomyces cerevisiae.
    Ramos A; Dos Santos MM; de Macedo GT; Wildner G; Prestes AS; Masuda CA; Dalla Corte CL; Teixeira da Rocha JB; Barbosa NV
    Chem Biol Interact; 2020 Jan; 315():108867. PubMed ID: 31672467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of methyl- and ethylmercury in natural waters at sub-nanogram per liter using SCF-adsorbent preconcentration procedure.
    Lee YH
    Int J Environ Anal Chem; 1987; 29(4):263-76. PubMed ID: 3596893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated speciation of mercury in the hair of breastfed infants exposed to ethylmercury from thimerosal-containing vaccines.
    Dórea JG; Wimer W; Marques RC; Shade C
    Biol Trace Elem Res; 2011 Jun; 140(3):262-71. PubMed ID: 20419397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of methylmercury biotransformation using rat liver slices.
    Yasutake A; Hirayama K
    Arch Toxicol; 2001 Sep; 75(7):400-6. PubMed ID: 11693180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte.
    Rosen H; Klebanoff SJ
    J Exp Med; 1979 Jan; 149(1):27-39. PubMed ID: 216766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n-propyl)borate as derivatizing agent.
    Gibicar D; Logar M; Horvat N; Marn-Pernat A; Ponikvar R; Horvat M
    Anal Bioanal Chem; 2007 May; 388(2):329-40. PubMed ID: 17340078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanosoma cruzi dihydrolipoamide dehydrogenase is inactivated by myeloperoxidase-generated "reactive species".
    Gutierrez-Correa J; Krauth-Siegel RL; Stoppani AO
    Free Radic Res; 2000 Jul; 33(1):13-22. PubMed ID: 10826917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime.
    Beckers F; Mothes S; Abrigata J; Zhao J; Gao Y; Rinklebe J
    Sci Total Environ; 2019 Jul; 672():604-617. PubMed ID: 30970288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.