BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 1317007)

  • 1. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon.
    Bhat PJ; Hopper JE
    Mol Cell Biol; 1992 Jun; 12(6):2701-7. PubMed ID: 1317007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene activation by dissociation of an inhibitor from a transcriptional activation domain.
    Jiang F; Frey BR; Evans ML; Friel JC; Hopper JE
    Mol Cell Biol; 2009 Oct; 29(20):5604-10. PubMed ID: 19651897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
    Egriboz O; Goswami S; Tao X; Dotts K; Schaeffer C; Pilauri V; Hopper JE
    Mol Cell Biol; 2013 Sep; 33(18):3667-74. PubMed ID: 23858060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch.
    Diep CQ; Peng G; Bewley M; Pilauri V; Ropson I; Hopper JE
    Genetics; 2006 Jan; 172(1):77-87. PubMed ID: 16219783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding.
    Anders A; Lilie H; Franke K; Kapp L; Stelling J; Gilles ED; Breunig KD
    J Biol Chem; 2006 Sep; 281(39):29337-48. PubMed ID: 16867978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases.
    Bajwa W; Torchia TE; Hopper JE
    Mol Cell Biol; 1988 Aug; 8(8):3439-47. PubMed ID: 3062381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80.
    Egriboz O; Jiang F; Hopper JE
    Genetics; 2011 Nov; 189(3):825-36. PubMed ID: 21890741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae.
    Torchia TE; Hopper JE
    Genetics; 1986 Jun; 113(2):229-46. PubMed ID: 3013721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gal80 dimerization and the yeast GAL gene switch.
    Pilauri V; Bewley M; Diep C; Hopper J
    Genetics; 2005 Apr; 169(4):1903-14. PubMed ID: 15695361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae.
    Bhat PJ; Oh D; Hopper JE
    Genetics; 1990 Jun; 125(2):281-91. PubMed ID: 2199310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive Feedback Genetic Circuit Incorporating a Constitutively Active Mutant Gal3 into Yeast GAL Induction System.
    Ryo S; Ishii J; Matsuno T; Nakamura Y; Matsubara D; Tominaga M; Kondo A
    ACS Synth Biol; 2017 Jun; 6(6):928-935. PubMed ID: 28324652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of a conserved tyrosine by tryptophan in Gal3p of Saccharomyces cerevisiae reduces constitutive activity: implications for signal transduction in the GAL regulon.
    Lakshminarasimhan A; Bhat PJ
    Mol Genet Genomics; 2005 Nov; 274(4):384-93. PubMed ID: 16160853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p.
    Suzuki-Fujimoto T; Fukuma M; Yano KI; Sakurai H; Vonika A; Johnston SA; Fukasawa T
    Mol Cell Biol; 1996 May; 16(5):2504-8. PubMed ID: 8628318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon.
    Zenke FT; Zachariae W; Lunkes A; Breunig KD
    Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein.
    Salmeron JM; Leuther KK; Johnston SA
    Genetics; 1990 May; 125(1):21-7. PubMed ID: 2187743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina.
    Hartl L; Kubicek CP; Seiboth B
    J Biol Chem; 2007 Jun; 282(25):18654-18659. PubMed ID: 17452322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression.
    Griggs DW; Johnston M
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8597-601. PubMed ID: 1924319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of inducer formation in gal3 mutants of the yeast galactose system is independent of normal galactose metabolism and mitochondrial respiratory function.
    Bhat PJ; Hopper JE
    Genetics; 1991 Jun; 128(2):233-9. PubMed ID: 2071013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch.
    Diep CQ; Tao X; Pilauri V; Losiewicz M; Blank TE; Hopper JE
    Genetics; 2008 Feb; 178(2):725-36. PubMed ID: 18245852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.