These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 13171459)
1. The effects of antibacterial agents in combination with an intestinal adsorbent. MOSS JN; MARTIN GJ Am J Pharm Sci Support Public Health; 1954 May; 126(5):165-70. PubMed ID: 13171459 [No Abstract] [Full Text] [Related]
2. [Methods of L form transformations in Proteus vulgaris and Enterobacteriacea in vivo under the effect of penicillin]. GRASSET E; BONIFAS V Ann Inst Pasteur (Paris); 1955 May; 88(5):651-6. PubMed ID: 13403328 [No Abstract] [Full Text] [Related]
3. Inhibition of protein synthesis by three erythromycin-derivatives. Werner RG; Teraoka H; Nierhaus KH Biochem Biophys Res Commun; 1978 Aug; 83(3):1147-56. PubMed ID: 361037 [No Abstract] [Full Text] [Related]
4. [Comparative observations on production in vivo and in vitro of L forms of Proteus vulgaris and Klebsiella pneumoniae under the influence of specific antibodies]. GRASSET E Ann Inst Pasteur (Paris); 1955 Jul; 89(1):111-5. PubMed ID: 13403357 [No Abstract] [Full Text] [Related]
5. Antibacterial potential from Indian Suregada angustifolia. Venkatesan M; Viswanathan MB; Ramesh N; Lakshmanaperumalsamy P J Ethnopharmacol; 2005 Jul; 99(3):349-52. PubMed ID: 15878247 [TBL] [Abstract][Full Text] [Related]
6. [Effects of 11 antibiotic substances on Pseudomonas aeruginosa and Proteus vulgaris]. NORDBECK S Arzneimittelforschung; 1957 Mar; 7(3):179-81. PubMed ID: 13425939 [No Abstract] [Full Text] [Related]
7. Regioselective synthetic approaches towards 1,2,8,9-tetraazadispiro[4.1.4.2]trideca-2,9-dien-6-ones of potential antimicrobial properties. Girgis AS; Barsoum FF; Samir A Eur J Med Chem; 2009 Jun; 44(6):2447-51. PubMed ID: 19211175 [TBL] [Abstract][Full Text] [Related]
8. [Interaction between Bifidobacterium bifidum, Proteus vulgaris, and Klebsiella pneumoniae 204 in the gastrointestinal tract of gnotobiotic chicks]. Timoshko MA; Vil'shanskaia FL; Pospelova VV; Rakhimova NG Zh Mikrobiol Epidemiol Immunobiol; 1981 Mar; (3):58-61. PubMed ID: 7018135 [TBL] [Abstract][Full Text] [Related]
9. The differences in antibiotic sensitivity of closely related single cells of Proteus vulgaris. HUGHES WH J Gen Microbiol; 1955 Apr; 12(2):269-74. PubMed ID: 14367752 [No Abstract] [Full Text] [Related]
10. The electron microscopy of L-forms induced by penicillin in Proteus vulgaris. PEASE P J Gen Microbiol; 1957 Aug; 17(1):64-7. PubMed ID: 13475673 [No Abstract] [Full Text] [Related]
11. [Flagellar findings in the L-phase of Proteus vulgaris]. KOHLER W Zentralbl Bakteriol Orig; 1958 Oct; 172(7-8):516-8. PubMed ID: 13616602 [No Abstract] [Full Text] [Related]
12. [Morphogenesis & significance of penicillin-induced L forms studied in a strain of Proteus vulgaris]. PITZURRA M; MORI M Boll Ist Sieroter Milan; 1957; 36(7-8):386-95. PubMed ID: 13471775 [No Abstract] [Full Text] [Related]
13. Comparative in vitro antibacterial activities of cefetamet (Ro 15-8074/005), a new oral cephalosporin, and eight other oral antimicrobials. Rozgonyi F; Papp-Falusi E; Varga J; Rozgonyi-Szitha K J Chemother; 1989 Jul; 1(4 Suppl):119-22. PubMed ID: 16312332 [No Abstract] [Full Text] [Related]
14. [Developmental capacity of L colonies induced by penicillin following subculture in normal medium studied in a strain of Proteus vulgaris]. PITZURRA M; MORI M Boll Ist Sieroter Milan; 1958; 37(3-4):171-82. PubMed ID: 13560643 [No Abstract] [Full Text] [Related]
15. Different application volumes of ethyl-cyanoacrylate tissue adhesive can change its antibacterial effects against ocular pathogens in vitro. Romero IL; Paiato TP; Silva CB; Nigro JB; Malta S; Jenne Mimica LM; Soong HK; Hida RY Curr Eye Res; 2008 Oct; 33(10):813-8. PubMed ID: 18853314 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial activity of the essential oil from Cymbopogon nervatus inflorescence. El-Kamali HH; Hamza MA; El-Amir MY Fitoterapia; 2005 Jul; 76(5):446-9. PubMed ID: 15896926 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of antibacterial in vitro activity of moxifloxacin and its effects on pulmonary clearance of Klebsiella pneumoniae in an animal experimental model. Drago L; De Vecchi E; Nicola L; Gismondo MR Arzneimittelforschung; 2005; 55(8):473-7. PubMed ID: 16149716 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial susceptibility of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Bishara J; Livne G; Ashkenazi S; Levy I; Pitlik S; Ofir O; Lev B; Samra Z Isr Med Assoc J; 2005 May; 7(5):298-301. PubMed ID: 15909461 [TBL] [Abstract][Full Text] [Related]
19. [Synthesis and antibacterial activity of 2-(3-pyridyl)-5-([(5-aryl-1,3,4-oxadiazol-2-yl) methylene]thio)-1,3,4-oxadiazoles]. Hu GQ; Xu QJ; Liu B; Zhang ZQ; Chen BQ; Xu QT; Huang WL; Zhang HB; Huang ST Yao Xue Xue Bao; 2004 Apr; 39(4):263-5. PubMed ID: 15303654 [TBL] [Abstract][Full Text] [Related]
20. The effect of amikacin and imipenem alone and in combination against an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain. Máthé A; Szabó D; Anderlik P; Rozgonyi F; Nagy K Diagn Microbiol Infect Dis; 2007 May; 58(1):105-10. PubMed ID: 17300908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]