BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 1317324)

  • 21. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+.
    Ramsay RR; Singer TP
    Biochem Biophys Res Commun; 1992 Nov; 189(1):47-52. PubMed ID: 1333196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance.
    Zang LY; Stone K; Pryor WA
    Free Radic Biol Med; 1995 Aug; 19(2):161-7. PubMed ID: 7649487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles.
    Poderoso JJ; Carreras MC; Lisdero C; Riobó N; Schöpfer F; Boveris A
    Arch Biochem Biophys; 1996 Apr; 328(1):85-92. PubMed ID: 8638942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The oxidative inactivation of mitochondrial electron transport chain components and ATPase.
    Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ
    J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 2,3-butanedione monoxime unmasks Ca(2+)-induced NADH formation and inhibits electron transport in rat hearts.
    Scaduto RC; Grotyohann LW
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1839-48. PubMed ID: 11009471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone.
    De Jong AM; Albracht SP
    Eur J Biochem; 1994 Jun; 222(3):975-82. PubMed ID: 8026508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The action of beta-adrenoceptor antagonists on rat heart mitochondrial function in vitro: a comparison of propranolol, timolol, and atenolol.
    Quinn PJ; Crutcher EC
    Cardiovasc Res; 1984 Apr; 18(4):212-9. PubMed ID: 6713449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of mitochondrial succinate oxidation--similarities and differences between N-methylated beta-carbolines and MPP+.
    Fields JZ; Albores RR; Neafsey EJ; Collins MA
    Arch Biochem Biophys; 1992 May; 294(2):539-43. PubMed ID: 1314543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP
    Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbocyanine dyes with long alkyl side-chains: broad spectrum inhibitors of mitochondrial electron transport chain activity.
    Anderson WM; Trgovcich-Zacok D
    Biochem Pharmacol; 1995 May; 49(9):1303-11. PubMed ID: 7763312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Inhibition of H2O2 and O2-. generation in the respiratory chain, treated with 2,3-dimercaptopropanol].
    Ksenzenko MIu; Konstantinov AA; Tikhonov AN; Ruuge EK
    Biokhimiia; 1982 Sep; 47(9):1577-9. PubMed ID: 6291643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of novel antiarrhythmic agents, BRB-I-28 and its derivatives, on the heart mitochondrial respiratory chain and sarcoplasmic reticulum Ca(2+)-ATPase.
    Chen CL; Sangiah S; Yu CA; Chen H; Berlin KD; Garrison GL; Scherlag BJ; Lazzara R
    Res Commun Mol Pathol Pharmacol; 1994 Aug; 85(2):193-208. PubMed ID: 7994564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of cytochrome b oxidation in antimycin-treated submitochondrial particles.
    Hatefi Y; Yagi T
    Biochemistry; 1982 Dec; 21(25):6614-8. PubMed ID: 7150580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Ferreira J; Wilkinson C; Gil L
    Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol.
    Takayanagi R; Takeshige K; Minakami S
    Biochem J; 1980 Dec; 192(3):853-60. PubMed ID: 7236242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibitory effect of the antioxidant ethoxyquin on electron transport in the mitochondrial respiratory chain.
    Reyes JL; Hernández ME; Meléndez E; Gómez-Lojero C
    Biochem Pharmacol; 1995 Jan; 49(3):283-9. PubMed ID: 7857314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow: implications for preconditioning.
    Hirata N; Shim YH; Pravdic D; Lohr NL; Pratt PF; Weihrauch D; Kersten JR; Warltier DC; Bosnjak ZJ; Bienengraeber M
    Anesthesiology; 2011 Sep; 115(3):531-40. PubMed ID: 21862887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.