These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1317356)

  • 1. Nitric oxide alters renal function and guanosine 3',5'-cyclic monophosphate.
    Siragy HM; Johns RA; Peach MJ; Carey RM
    Hypertension; 1992 Jun; 19(6 Pt 2):775-9. PubMed ID: 1317356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-derived relaxing factor modulates renal interstitial cyclic GMP.
    Siragy HM
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S163-5. PubMed ID: 1282958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses.
    Tolins JP; Palmer RM; Moncada S; Raij L
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H655-62. PubMed ID: 2156453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function.
    Perrella MA; Hildebrand FL; Margulies KB; Burnett JC
    Am J Physiol; 1991 Aug; 261(2 Pt 2):R323-8. PubMed ID: 1877690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bradykinin B2 receptor modulates renal prostaglandin E2 and nitric oxide.
    Siragy HM; Jaffa AA; Margolius HS
    Hypertension; 1997 Mar; 29(3):757-62. PubMed ID: 9052892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renin-angiotensin system modulates renal bradykinin production.
    Siragy HM; Jaffa AA; Margolius HS; Carey RM
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R1090-5. PubMed ID: 8898005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of systemic NO synthesis inhibition on RPF, GFR, UNa, and vasoactive hormones in healthy humans.
    Bech JN; Nielsen CB; Pedersen EB
    Am J Physiol; 1996 May; 270(5 Pt 2):F845-51. PubMed ID: 8928847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
    Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide: a potential mediator of amino acid-induced renal hyperemia and hyperfiltration.
    King AJ; Troy JL; Anderson S; Neuringer JR; Gunning M; Brenner BM
    J Am Soc Nephrol; 1991 Jun; 1(12):1271-7. PubMed ID: 1912389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glomerular and tubular interactions between renal adrenergic activity and nitric oxide.
    Gabbai FB; Thomson SC; Peterson O; Wead L; Malvey K; Blantz RC
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1004-8. PubMed ID: 7611442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediatory role of endothelium-derived nitric oxide in renal vasodilatory and excretory effects of bradykinin.
    Lahera V; Salom MG; Fiksen-Olsen MJ; Romero JC
    Am J Hypertens; 1991 Mar; 4(3 Pt 1):260-2. PubMed ID: 2043304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of renal nitric oxide synthesis with NG-monomethyl-L-arginine and NG-nitro-L-arginine.
    Naess PA; Kirkebøen KA; Christensen G; Kiil F
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F939-42. PubMed ID: 1535755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor necrosis factor alpha activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism.
    Marsden PA; Ballermann BJ
    J Exp Med; 1990 Dec; 172(6):1843-52. PubMed ID: 1979590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal responses to intra-arterial administration of nitric oxide donor in dogs.
    Majid DS; Williams A; Kadowitz PJ; Navar LG
    Hypertension; 1993 Oct; 22(4):535-41. PubMed ID: 8406658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of NG-nitro-L-arginine, a nitric oxide synthase inhibitor, on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetized dogs.
    Egi Y; Matsumura Y; Murata S; Umekawa T; Hisaki K; Takaoka M; Morimoto S
    J Pharmacol Exp Ther; 1994 May; 269(2):529-35. PubMed ID: 7514219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial cGMP does not regulate basal release of endothelium-derived relaxing factor in culture.
    Marczin N; Ryan US; Catravas JD
    Am J Physiol; 1992 Jul; 263(1 Pt 1):L113-21. PubMed ID: 1379001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine.
    Salom MG; Lahera V; Romero JC
    Am J Physiol; 1991 Jan; 260(1 Pt 2):F145-9. PubMed ID: 1992776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of NG-monomethyl-L-arginine and L-arginine on acetylcholine renal response.
    Lahera V; Salom MG; Fiksen-Olsen MJ; Raij L; Romero JC
    Hypertension; 1990 Jun; 15(6 Pt 1):659-63. PubMed ID: 2347626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans.
    Bech JN; Nielsen CB; Ivarsen P; Jensen KT; Pedersen EB
    Am J Physiol; 1998 May; 274(5):F914-23. PubMed ID: 9612329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal hemodynamics in acute unilateral ureteral obstruction: contribution of endothelium-derived relaxing factor.
    Lanzone JA; Gulmi FA; Chou SY; Mooppan UM; Kim H
    J Urol; 1995 Jun; 153(6):2055-9. PubMed ID: 7752393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.