These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1317372)

  • 41. Effect of neonatal spinal transection and dorsal rhizotomy on hindlimb muscles.
    Chatzisotiriou AS; Kapoukranidou D; Gougoulias NE; Albani M
    Brain Res Dev Brain Res; 2005 Jun; 157(2):113-23. PubMed ID: 15921763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Doublet electrical stimulation enhances torque production in people with spinal cord injury.
    Chang YJ; Shields RK
    Neurorehabil Neural Repair; 2011 Jun; 25(5):423-32. PubMed ID: 21304018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feedback-controlled stimulation enhances human paralyzed muscle performance.
    Shields RK; Dudley-Javoroski S; Cole KR
    J Appl Physiol (1985); 2006 Nov; 101(5):1312-9. PubMed ID: 16809630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents.
    Kanchiku T; Kato Y; Suzuki H; Imajo Y; Yoshida Y; Moriya A; Taguchi T; Jung R
    J Spinal Cord Med; 2012 May; 35(3):162-9. PubMed ID: 22507026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury.
    Dimitrijevic MR; Dimitrijevic MM; Faganel J; Sherwood AM
    Ann Neurol; 1984 Aug; 16(2):216-21. PubMed ID: 6089647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The efficacy of neuromuscular electrical stimulation with alternating currents in the kilohertz frequency to stimulate gait rhythm in rats following spinal cord injury.
    Kanchiku T; Suzuki H; Imajo Y; Yoshida Y; Moriya A; Suetomi Y; Nishida N; Takahashi Y; Taguchi T
    Biomed Eng Online; 2015 Oct; 14():98. PubMed ID: 26510623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physiologic effects of functional electrical stimulation-induced exercises in spinal cord-injured individuals.
    Ragnarsson KT
    Clin Orthop Relat Res; 1988 Aug; (233):53-63. PubMed ID: 3261220
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural signals for command control and feedback in functional neuromuscular stimulation: a review.
    Hoffer JA; Stein RB; Haugland MK; Sinkjaer T; Durfee WK; Schwartz AB; Loeb GE; Kantor C
    J Rehabil Res Dev; 1996 Apr; 33(2):145-57. PubMed ID: 8724170
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motor-unit recruitment in self-reinnervated muscle.
    Cope TC; Clark BD
    J Neurophysiol; 1993 Nov; 70(5):1787-96. PubMed ID: 8294953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-related changes of motor unit properties in the rat medial gastrocnemius muscle after the spinal cord injury. II. Effects of a spinal cord hemisection.
    Celichowski J; Kryściak K; Krutki P; Majczyński H; Górska T; Sławińska U
    J Electromyogr Kinesiol; 2010 Jun; 20(3):532-41. PubMed ID: 19679495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans.
    Shields RK; Law LF; Reiling B; Sass K; Wilwert J
    J Appl Physiol (1985); 1997 May; 82(5):1499-507. PubMed ID: 9134899
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whole-muscle and motor-unit contractile properties of the styloglossus muscle in rat.
    Sutlive TG; McClung JR; Goldberg SJ
    J Neurophysiol; 1999 Aug; 82(2):584-92. PubMed ID: 10444658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats.
    Dupont Salter AC; Richmond FJ; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):218-26. PubMed ID: 14518784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional over-load saves motor units in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis.
    Gordon T; Tyreman N; Li S; Putman CT; Hegedus J
    Neurobiol Dis; 2010 Feb; 37(2):412-22. PubMed ID: 19879358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Repetetive hindlimb movement using intermittent adaptive neuromuscular electrical stimulation in an incomplete spinal cord injury rodent model.
    Fairchild MD; Kim SJ; Iarkov A; Abbas JJ; Jung R
    Exp Neurol; 2010 Jun; 223(2):623-33. PubMed ID: 20206164
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury--observed benefits during gait studies.
    Granat MH; Ferguson AC; Andrews BJ; Delargy M
    Paraplegia; 1993 Apr; 31(4):207-15. PubMed ID: 8493035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of conditioning cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing.
    Fung J; Barbeau H
    J Neurophysiol; 1994 Nov; 72(5):2090-104. PubMed ID: 7884446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.