These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 13174574)

  • 21. The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures.
    Nissen P; Nielsen D; Arneborg N
    Appl Microbiol Biotechnol; 2004 May; 64(4):543-50. PubMed ID: 14689245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine.
    von der Haar F; Cramer F
    Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Tricarboxylic cycle in active and slightly active cultures of Saccharomyces cerevisiae yeasts].
    KARPENKO MK; BURAKOVA AA
    Mikrobiol Zh; 1963; 25():21-6. PubMed ID: 13962588
    [No Abstract]   [Full Text] [Related]  

  • 24. Valine biosynthesis in
    Takpho N; Watanabe D; Takagi H
    Microb Cell; 2018 Mar; 5(6):293-299. PubMed ID: 29850466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae.
    Takpho N; Watanabe D; Takagi H
    Metab Eng; 2018 Mar; 46():60-67. PubMed ID: 29477860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts.
    Maturano YP; Mestre MV; Kuchen B; Toro ME; Mercado LA; Vazquez F; Combina M
    Int J Food Microbiol; 2019 Jan; 289():40-48. PubMed ID: 30196180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional roles of a predicted branched chain aminotransferase encoded by the LkBAT1 gene of the yeast Lachancea kluyveri.
    Montalvo-Arredondo J; Jiménez-Benítez Á; Colón-González M; González-Flores J; Flores-Villegas M; González A; Riego-Ruiz L
    Fungal Genet Biol; 2015 Dec; 85():71-82. PubMed ID: 26563416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.
    Ohta E; Nakayama Y; Mukai Y; Bamba T; Fukusaki E
    J Biosci Bioeng; 2016 Apr; 121(4):399-405. PubMed ID: 26344121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The yeasts named Saccharomyces steineri and Saccharomyces italicus].
    DOMERCQ S; PEYNAUD E
    Ann Inst Pasteur (Paris); 1956 Oct; 91(4):574-80. PubMed ID: 13373073
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae.
    Holmberg S; Petersen JG
    Curr Genet; 1988 Mar; 13(3):207-17. PubMed ID: 3289762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoleucyl-tRNA synthetase from baker's yeast: the 3'-hydroxyl group of the 3'-terminal ribose is essential for preventing misacylation of tRNAIle-C-C-A with misactivated valine.
    von der Haar F; Cramer F
    FEBS Lett; 1975 Aug; 56(2):215-7. PubMed ID: 1098931
    [No Abstract]   [Full Text] [Related]  

  • 33. Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast
    González J; López G; Argueta S; Escalera-Fanjul X; El Hafidi M; Campero-Basaldua C; Strauss J; Riego-Ruiz L; González A
    Genetics; 2017 Nov; 207(3):975-991. PubMed ID: 28912343
    [No Abstract]   [Full Text] [Related]  

  • 34. Studies on leucine biosynthesis in yeast.
    REISS O; BLOCH K
    J Biol Chem; 1955 Oct; 216(2):703-12. PubMed ID: 13271346
    [No Abstract]   [Full Text] [Related]  

  • 35. [Studies on the effect of p-benzoquinone derivatives on the aerobic and anaerobic metabolism of yeasts (Saccharomyces cerevisiae].
    FLAIG W; de JONG
    Arch Mikrobiol; 1960; 37():355-68. PubMed ID: 13700110
    [No Abstract]   [Full Text] [Related]  

  • 36. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.
    Domizio P; Romani C; Lencioni L; Comitini F; Gobbi M; Mannazzu I; Ciani M
    Int J Food Microbiol; 2011 Jun; 147(3):170-80. PubMed ID: 21531033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Threonine metabolism in Saccharomyces cerevisiae].
    GRILLO MA
    Boll Soc Ital Biol Sper; 1953 Jun; 29(6):1146-7. PubMed ID: 13126261
    [No Abstract]   [Full Text] [Related]  

  • 38. [Metabolism of threonine in Saccharomyces cerevisiae].
    GRILLO MA
    Arch Sci Biol (Bologna); 1954; 38(2):145-54. PubMed ID: 13181651
    [No Abstract]   [Full Text] [Related]  

  • 39. [DEHYDROGENASE ACTIVITY OF THERMO-TOLERANT SACCHAROMYCES CEREVISIAE YEASTS AT DIFFERENT PH'S OF THE MEDIUM].
    GUZHOVA EP; LOGINOVA LG
    Mikrobiologiia; 1963; 32():783-4. PubMed ID: 14053507
    [No Abstract]   [Full Text] [Related]  

  • 40. The role of biotin in carbohydrate metabolism of Saccharomyces cerevisiae.
    MOAT AG; LICHSTEIN HC
    Arch Biochem Biophys; 1954 Feb; 48(2):300-9. PubMed ID: 13125604
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.