These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 1317712)
21. Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Volpp BD; Nauseef WM; Clark RA Science; 1988 Dec; 242(4883):1295-7. PubMed ID: 2848318 [TBL] [Abstract][Full Text] [Related]
22. Identification of a thermolabile component of the human neutrophil NADPH oxidase. A model for chronic granulomatous disease caused by deficiency of the p67-phox cytosolic component. Erickson RW; Malawista SE; Garrett MC; Van Blaricom G; Leto TL; Curnutte JT J Clin Invest; 1992 May; 89(5):1587-95. PubMed ID: 1314852 [TBL] [Abstract][Full Text] [Related]
23. The respiratory burst oxidase and the molecular genetics of chronic granulomatous disease. Dinauer MC Crit Rev Clin Lab Sci; 1993; 30(4):329-69. PubMed ID: 8110374 [TBL] [Abstract][Full Text] [Related]
24. NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. Geiszt M; Lekstrom K; Brenner S; Hewitt SM; Dana R; Malech HL; Leto TL J Immunol; 2003 Jul; 171(1):299-306. PubMed ID: 12817011 [TBL] [Abstract][Full Text] [Related]
25. Mechanisms for the activation/electron transfer of neutrophil NADPH-oxidase complex and molecular pathology of chronic granulomatous disease. Umeki S Ann Hematol; 1994 Jun; 68(6):267-77. PubMed ID: 8038232 [TBL] [Abstract][Full Text] [Related]
26. Structure of the NADPH-oxidase: membrane components. Segal AW Immunodeficiency; 1993; 4(1-4):167-79. PubMed ID: 8167695 [No Abstract] [Full Text] [Related]
27. The p47phox mouse knock-out model of chronic granulomatous disease. Jackson SH; Gallin JI; Holland SM J Exp Med; 1995 Sep; 182(3):751-8. PubMed ID: 7650482 [TBL] [Abstract][Full Text] [Related]
28. Cytochrome b-245 and its involvement in the molecular pathology of chronic granulomatous disease. Segal AW Hematol Oncol Clin North Am; 1988 Jun; 2(2):213-23. PubMed ID: 3292507 [TBL] [Abstract][Full Text] [Related]
29. A new mutation in exon 12 of the gp91-phox gene leading to cytochrome b-positive X-linked chronic granulomatous disease. Azuma H; Oomi H; Sasaki K; Kawabata I; Sakaino T; Koyano S; Suzutani T; Nunoi H; Okuno A Blood; 1995 Jun; 85(11):3274-7. PubMed ID: 7756659 [TBL] [Abstract][Full Text] [Related]
30. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Bayraktutan U; Draper N; Lang D; Shah AM Cardiovasc Res; 1998 Apr; 38(1):256-62. PubMed ID: 9683929 [TBL] [Abstract][Full Text] [Related]
31. Functional defect in neutrophil cytosols from two patients with autosomal recessive cytochrome-positive chronic granulomatous disease. Curnutte JT; Scott PJ; Babior BM J Clin Invest; 1989 Apr; 83(4):1236-40. PubMed ID: 2539395 [TBL] [Abstract][Full Text] [Related]
38. Update on chronic granulomatous diseases of childhood. Immunotherapy and potential for gene therapy. Gallin JI; Malech HL JAMA; 1990 Mar; 263(11):1533-7. PubMed ID: 2106591 [No Abstract] [Full Text] [Related]
39. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Rotrosen D; Yeung CL; Leto TL; Malech HL; Kwong CH Science; 1992 Jun; 256(5062):1459-62. PubMed ID: 1318579 [TBL] [Abstract][Full Text] [Related]
40. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Leto TL; Adams AG; de Mendez I Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10650-4. PubMed ID: 7938008 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]