These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 1318181)

  • 21. G-protein-coupled receptors: regulatory role of receptor kinases and arrestin proteins.
    Lefkowitz RJ; Inglese J; Koch WJ; Pitcher J; Attramadal H; Caron MG
    Cold Spring Harb Symp Quant Biol; 1992; 57():127-33. PubMed ID: 1339651
    [No Abstract]   [Full Text] [Related]  

  • 22. The role of Gs in activation of adenylate cyclase.
    Martin BR; Farndale RW; Wong SK
    Biochem Soc Trans; 1987 Feb; 15(1):19-21. PubMed ID: 3104109
    [No Abstract]   [Full Text] [Related]  

  • 23. To what extent can binding studies allow the quantification of affinity and efficacy?
    Birdsall NJ; Lazareno S
    Ann N Y Acad Sci; 1997 May; 812():41-7. PubMed ID: 9186719
    [No Abstract]   [Full Text] [Related]  

  • 24. GDP does not support activation of adenylate cyclase nor ADP-ribosylation of a guanine nucleotide binding protein by cholera toxin.
    Shimada N; Kimura N
    FEBS Lett; 1983 Aug; 159(1-2):75-8. PubMed ID: 6307753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Kinetikit and GENESIS for modeling signaling pathways.
    Bhalla US
    Methods Enzymol; 2002; 345():3-23. PubMed ID: 11665614
    [No Abstract]   [Full Text] [Related]  

  • 26. In vitro activation of the Saccharomyces cerevisiae Ras/adenylate cyclase system by glucose and some of its analogues.
    Pardo LA; Sánchez LM; Lazo PS; Ramos S
    FEBS Lett; 1991 Sep; 290(1-2):43-8. PubMed ID: 1915890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction.
    Boege F; Neumann E; Helmreich EJ
    Eur J Biochem; 1991 Jul; 199(1):1-15. PubMed ID: 1648482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a guanosine-nucleotide-binding-protein-coupled receptor for pituitary adenylate-cyclase-activating polypeptide on plasma membranes from rat brain.
    Schäfer H; Schwarzhoff R; Creutzfeldt W; Schmidt WE
    Eur J Biochem; 1991 Dec; 202(3):951-8. PubMed ID: 1662620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of G-protein beta gamma subunits in signal transduction.
    Müller S; Lohse MJ
    Biochem Soc Trans; 1995 Feb; 23(1):141-8. PubMed ID: 7758707
    [No Abstract]   [Full Text] [Related]  

  • 30. Similar characteristics of guanine nucleotide regulatory sites involved in adenylate cyclase activation, specific GTPase activity, and cholecystokinin binding in rat pancreatic plasma membranes.
    Lambert M; Deschodt-Lanckman M; Furnelle J; Christophe J
    J Cyclic Nucleotide Res; 1981; 7(6):385-97. PubMed ID: 6125533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tubulin stimulates adenylyl cyclase activity in rat striatal membranes via transfer of guanine nucleotide to Gs protein.
    Hatta S; Ozawa H; Saito T; Amemiya N; Ohshika H
    Brain Res; 1995 Dec; 704(1):23-30. PubMed ID: 8750958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of guanine nucleotides on [3H]glutamate binding and on adenylate cyclase activity in rat brain membranes.
    Rubin MA; Medeiros AC; Rocha PC; Livi CB; Ramirez G; Souza DO
    Neurochem Res; 1997 Feb; 22(2):181-7. PubMed ID: 9016844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conditional regulation of adenylyl cyclases by G-protein beta gamma-subunits.
    Ueda N; Tang WJ
    Biochem Soc Trans; 1993 Nov; 21(4):1132-8. PubMed ID: 8131912
    [No Abstract]   [Full Text] [Related]  

  • 34. Synthetic peptides to mimic the role of GTP binding proteins in membrane traffic and fusion.
    Law GJ; Northrop AJ
    Ann N Y Acad Sci; 1994 Mar; 710():196-208. PubMed ID: 8154748
    [No Abstract]   [Full Text] [Related]  

  • 35. Are guanine nucleotide binding proteins a distinct class of regulatory proteins?
    Hughes SM
    FEBS Lett; 1983 Nov; 164(1):1-8. PubMed ID: 6317436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deactivation of persistently activated pancreatic adenylate cyclase. Evidence of uncoupling of hormone receptors and enzyme effector in the persistently activated state, and of the presence of two guanyl nucleotide regulatory sites.
    Svoboda M; Robberecht P; Christophe J
    FEBS Lett; 1978 Aug; 92(2):351-6. PubMed ID: 212305
    [No Abstract]   [Full Text] [Related]  

  • 37. Measurement of receptor desensitization and internalization in intact cells.
    Clark RB; Knoll BJ
    Methods Enzymol; 2002; 343():506-29. PubMed ID: 11665589
    [No Abstract]   [Full Text] [Related]  

  • 38. Mechanisms of multifunctional signalling by G protein-linked receptors.
    Milligan G
    Trends Pharmacol Sci; 1993 Jun; 14(6):239-44. PubMed ID: 8396793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of catecholamine stimulated adenylate cyclase in pigeon erythrocyte membranes by guanylnucleotides.
    Helmreich EJ; Pfeuffer T
    Adv Enzyme Regul; 1976; 15():209-20. PubMed ID: 197804
    [No Abstract]   [Full Text] [Related]  

  • 40. Guanyl nucleotide regulation of hormonally-responsive adenylyl cyclases.
    Abramowitz J; Iyengar R; Birnbaumer L
    Mol Cell Endocrinol; 1979 Dec; 16(3):129-46. PubMed ID: 230102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.