These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 1318384)
1. Binding of an antiviral agent to a sensitive and a resistant human rhinovirus. Computer simulation studies with sampling of amino acid side-chain conformations. II. Calculation of free-energy differences by thermodynamic integration. Wade RC; McCammon JA J Mol Biol; 1992 Jun; 225(3):697-712. PubMed ID: 1318384 [TBL] [Abstract][Full Text] [Related]
2. Binding of an antiviral agent to a sensitive and a resistant human rhinovirus. Computer simulation studies with sampling of amino acid side-chain conformation. I. Mapping the rotamers of residue 188 of viral protein 1. Wade RC; McCammon JA J Mol Biol; 1992 Jun; 225(3):679-96. PubMed ID: 1318383 [TBL] [Abstract][Full Text] [Related]
3. Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus. Lybrand TP; McCammon JA J Comput Aided Mol Des; 1989 Jan; 2(4):259-66. PubMed ID: 2541225 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Phelps DK; Post CB Protein Sci; 1999 Nov; 8(11):2281-9. PubMed ID: 10595531 [TBL] [Abstract][Full Text] [Related]
6. Motion of an antiviral compound in a rhinovirus capsid under rotational symmetry boundary conditions. Yoneda S; Yoneda T; Kurihara Y; Umeyama H J Mol Graph Model; 2002 Aug; 21(1):19-27. PubMed ID: 12413027 [TBL] [Abstract][Full Text] [Related]
7. Influence of an antiviral compound on the temperature dependence of viral protein flexibility and packing: a molecular dynamics study. Phelps DK; Rossky PJ; Post CB J Mol Biol; 1998 Feb; 276(2):331-7. PubMed ID: 9512706 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Badger J; Minor I; Kremer MJ; Oliveira MA; Smith TJ; Griffith JP; Guerin DM; Krishnaswamy S; Luo M; Rossmann MG Proc Natl Acad Sci U S A; 1988 May; 85(10):3304-8. PubMed ID: 2835768 [TBL] [Abstract][Full Text] [Related]
9. Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses. Singh A; Soliman ME Drug Des Devel Ther; 2015; 9():4137-54. PubMed ID: 26257512 [TBL] [Abstract][Full Text] [Related]
10. Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: a thermodynamic cycle-perturbation approach. Reddy MR; Viswanadhan VN; Weinstein JN Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10287-91. PubMed ID: 1946447 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of human rhinovirus and an antiviral compound. Speelman B; Brooks BR; Post CB Biophys J; 2001 Jan; 80(1):121-9. PubMed ID: 11159387 [TBL] [Abstract][Full Text] [Related]
12. Insights into susceptibility of antiviral drugs against the E119G mutant of 2009 influenza A (H1N1) neuraminidase by molecular dynamics simulations and free energy calculations. Pan P; Li L; Li Y; Li D; Hou T Antiviral Res; 2013 Nov; 100(2):356-64. PubMed ID: 24055835 [TBL] [Abstract][Full Text] [Related]
13. Structure determination of antiviral compound SCH 38057 complexed with human rhinovirus 14. Zhang A; Nanni RG; Li T; Arnold GF; Oren DA; Jacobo-Molina A; Williams RL; Kamer G; Rubenstein DA; Li Y J Mol Biol; 1993 Apr; 230(3):857-67. PubMed ID: 8386772 [TBL] [Abstract][Full Text] [Related]
14. Genetic and molecular analyses of spontaneous mutants of human rhinovirus 14 that are resistant to an antiviral compound. Heinz BA; Rueckert RR; Shepard DA; Dutko FJ; McKinlay MA; Fancher M; Rossmann MG; Badger J; Smith TJ J Virol; 1989 Jun; 63(6):2476-85. PubMed ID: 2542566 [TBL] [Abstract][Full Text] [Related]
15. Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides. Pitera JW; Kollman PA Proteins; 2000 Nov; 41(3):385-97. PubMed ID: 11025549 [TBL] [Abstract][Full Text] [Related]
16. Dissociation of an antiviral compound from the internal pocket of human rhinovirus 14 capsid. Li Y; Zhou Z; Post CB Proc Natl Acad Sci U S A; 2005 May; 102(21):7529-34. PubMed ID: 15899980 [TBL] [Abstract][Full Text] [Related]
17. N9 neuraminidase complexes with antibodies NC41 and NC10: empirical free energy calculations capture specificity trends observed with mutant binding data. Tulip WR; Harley VR; Webster RG; Novotny J Biochemistry; 1994 Jul; 33(26):7986-97. PubMed ID: 7517697 [TBL] [Abstract][Full Text] [Related]
18. Interpreting Thermodynamic Profiles of Aminoadamantane Compounds Inhibiting the M2 Proton Channel of Influenza A by Free Energy Calculations. Homeyer N; Ioannidis H; Kolarov F; Gauglitz G; Zikos C; Kolocouris A; Gohlke H J Chem Inf Model; 2016 Jan; 56(1):110-26. PubMed ID: 26690735 [TBL] [Abstract][Full Text] [Related]
19. Structural and virological studies of the stages of virus replication that are affected by antirhinovirus compounds. Zhang Y; Simpson AA; Ledford RM; Bator CM; Chakravarty S; Skochko GA; Demenczuk TM; Watanyar A; Pevear DC; Rossmann MG J Virol; 2004 Oct; 78(20):11061-9. PubMed ID: 15452226 [TBL] [Abstract][Full Text] [Related]
20. Computer modelling of the alpha-helical coiled coil: packing of side-chains in the inner core. Offer G; Sessions R J Mol Biol; 1995 Jun; 249(5):967-87. PubMed ID: 7791220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]