These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 1318514)

  • 1. Placebo effects in standard human neuropharmacological studies: effects of physiological variations of blood glucose and ammonia concentration on the electrophysiology of the visual system.
    Sannita WG; Balestra V; DiBon G; Hassan KM; Rosadini G
    Neuropsychobiology; 1992; 25(1):49-60. PubMed ID: 1318514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of physiological changes of serum glucose on the pattern-VEP of healthy volunteers.
    Sannita WG; Fatone M; Garbarino S; Giglioli D; Massimilla S; Riela S
    Physiol Behav; 1995 Nov; 58(5):1021-6. PubMed ID: 8577872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies.
    Guarino I; Loizzo S; Lopez L; Fadda A; Loizzo A
    Neural Plast; 2004; 11(3-4):241-50. PubMed ID: 15656271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factor structure and ammonia-related modulation of the human retinal oscillatory potentials.
    Beelke M; Carozzo S; De Carli F; Massimilla S; Nobili L; Ogliastro C; Sannita WG
    Clin Neurophysiol; 2001 Feb; 112(2):344-50. PubMed ID: 11165540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency oscillations in human visual cortex do not mirror retinal frequencies.
    Heinrich SP; Bach M
    Neurosci Lett; 2004 Oct; 369(1):55-8. PubMed ID: 15380307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of mild hypoglycemia on proximal and distal retinal structures in man as revealed by electroretinography.
    Skrandies W; Heinrich H
    Neurosci Lett; 1992 Jan; 134(2):165-8. PubMed ID: 1589141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose availability and the electrophysiology of the human visual system.
    Lopez L; Sannita WG
    Clin Neurosci; 1997; 4(6):336-40. PubMed ID: 9358977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
    Bayram A; Bayraktaroglu Z; Karahan E; Erdogan B; Bilgic B; Ozker M; Kasikci I; Duru AD; Ademoglu A; Oztürk C; Arikan K; Tarhan N; Demiralp T
    Clin EEG Neurosci; 2011 Apr; 42(2):98-106. PubMed ID: 21675599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Retinal and cortical electrical activity in man: physiologic bases and clinical applications].
    Skrandies W
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1991 Dec; 22(4):200-7. PubMed ID: 1786780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental studies of the role of the adrenergic system in the development of bioelectric response of the retina and visual cortex. III. Effect of adrenaline on the ERG and VEP in rabbits].
    Czepita D
    Klin Oczna; 1991; 93(4-5):111-3. PubMed ID: 1921215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation.
    Shah HA; Montezuma SR; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):247-54. PubMed ID: 16750527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the retinocortical evoked potentials in subjects 75 years of age and older.
    Justino L; Kergoat H; Kergoat MJ
    Clin Neurophysiol; 2001 Jul; 112(7):1343-8. PubMed ID: 11516747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of glial cells to spontaneous and evoked potentials.
    Galambos R; Juhasz G
    Int J Psychophysiol; 1997 Jun; 26(1-3):229-36. PubMed ID: 9203005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual retinocortical function in dementia of the Alzheimer type.
    Kergoat H; Kergoat MJ; Justino L; Chertkow H; Robillard A; Bergman H
    Gerontology; 2002; 48(4):197-203. PubMed ID: 12053107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiology of the visual system: from neuroscience to human neuropharmacology.
    Sannita WG
    Neuropsychobiology; 1995; 32(4):208-13. PubMed ID: 8587703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The relationship between oscillatory potentials of the electroretinogpam and components of the visual cortex evoked response].
    Abdullaev GB; Gadzhieva NA; Zheretienko VK; Dmitrenko AI
    Fiziol Zh SSSR Im I M Sechenova; 1975 Nov; 61(11):1626-33. PubMed ID: 1201788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flash of light: a personal review of 21 years of study of the electrical activity of the visual pathway beyond the retina.
    Harding GF
    Ophthalmic Physiol Opt; 1984; 4(4):293-304. PubMed ID: 6504525
    [No Abstract]   [Full Text] [Related]  

  • 18. Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex.
    Im CH; Gururajan A; Zhang N; Chen W; He B
    J Neurosci Methods; 2007 Mar; 161(1):142-54. PubMed ID: 17098289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental studies of the role of the adrenergic system in the development of bioelectric response of the retina and visual cortex. II. Methodology and characteristics of the ERG and VEP recording].
    Czepita D
    Klin Oczna; 1991; 93(4-5):108-10. PubMed ID: 1921214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of retinal acuity in infants evaluated with pattern electroretinogram.
    Fiorentini A; Pirchio M; Sandini G
    Hum Neurobiol; 1984; 3(2):93-5. PubMed ID: 6746336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.