These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 1318537)
1. Erythrocyte sodium-potassium transport in cystic fibrosis. Sigström L; Strandvik B Pediatr Res; 1992 May; 31(5):425-7. PubMed ID: 1318537 [TBL] [Abstract][Full Text] [Related]
2. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations. Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586 [TBL] [Abstract][Full Text] [Related]
3. Calcium and sodium transport processes in patients with cystic fibrosis. I. A specific decrease in Mg2+-dependent, Ca2+-adenosine triphosphatase activity in erythrocyte membranes from cystic fibrosis patients. Katz S Pediatr Res; 1978 Nov; 12(11):1033-8. PubMed ID: 214742 [TBL] [Abstract][Full Text] [Related]
4. Abnormal erythrocyte Na, K-ATPase activity in a northeastern Thai population. Tosukhowong P; Chotikasatit C; Tungsanga K; Sriboonlue P; Prasongwattana V; Pansin P; Sitprija V Southeast Asian J Trop Med Public Health; 1992 Sep; 23(3):526-30. PubMed ID: 1336901 [TBL] [Abstract][Full Text] [Related]
5. The role of active sodium and potassium transport in hyponatremic states in infancy and childhood. Sigström L Acta Paediatr Scand; 1981; 70(3):353-9. PubMed ID: 6454326 [TBL] [Abstract][Full Text] [Related]
6. Erythrocyte cationic transport systems in normal male and female volunteers. Lijnen P; M'Buyamba-Kabangu JR; Lissens W; Amery A Methods Find Exp Clin Pharmacol; 1985 Jan; 7(1):35-40. PubMed ID: 2985891 [TBL] [Abstract][Full Text] [Related]
7. [Effect of age on the activity of Mg-Na-K-ATPase, as well as on the K and Na concentration in human erythrocytes]. Platt D; Haas H Z Gerontol; 1979; 12(1):73-88. PubMed ID: 219631 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of active sodium and potassium transport in erythrocytes of healthy infants and children. Sigström L; Waldenström J; Karlberg P Acta Paediatr Scand; 1981; 70(3):347-52. PubMed ID: 6454325 [TBL] [Abstract][Full Text] [Related]
9. [Alcohol-related high blood pressure, and erythrocyte Na+/K(+)-ATPase activity, sodium and potassium concentrations]. Tsuritani I; Teraoka K; Miyagoshi M; Honda R; Ishizaki M; Yamada Y Rinsho Byori; 1993 Dec; 41(12):1353-7. PubMed ID: 8295347 [TBL] [Abstract][Full Text] [Related]
10. Na+/K+ ATPase in lower airway epithelium from cystic fibrosis and non-cystic-fibrosis lung. Peckham D; Holland E; Range S; Knox AJ Biochem Biophys Res Commun; 1997 Mar; 232(2):464-8. PubMed ID: 9125202 [TBL] [Abstract][Full Text] [Related]
11. [Relation between energy metabolism, Na+ and K+ levels, and Na,K-ATPase activity in erythrocytes and their volume and shape during overheating]. Bondarev DP; Kozlov NB Vopr Med Khim; 1988; 34(5):87-91. PubMed ID: 2851213 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of active sodium and potassium transport in erythrocytes in children with different stages of symptomatic uremia. Sigström L Acta Paediatr Scand; 1981; 70(3):361-8. PubMed ID: 6454327 [TBL] [Abstract][Full Text] [Related]
13. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man. Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051 [TBL] [Abstract][Full Text] [Related]
14. Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension. Kedzierska K; Bober J; Ciechanowski K; Gołembiewska E; Kwiatkowska E; Noceń I; Dołegowska B; Dutkiewicz G; Chlubek D Biol Trace Elem Res; 2005 Oct; 107(1):21-32. PubMed ID: 16170219 [TBL] [Abstract][Full Text] [Related]
15. Altered erythrocyte sodium-lithium counter-transport and Na+/K(+)-ATPase activity in cystic fibrosis. Luczay A; Vásárhelyi B; Dobos M; Holics K; Ujhelyi R; Tulassay T Acta Paediatr; 1997 Mar; 86(3):245-7. PubMed ID: 9099312 [TBL] [Abstract][Full Text] [Related]
16. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro. Yamasaki M; Nakamura K; Tamura N; Hwang SJ; Yoshikawa M; Sasaki N; Ohta H; Yamato O; Maede Y; Takiguchi M J Parasitol; 2009 Dec; 95(6):1532-8. PubMed ID: 20929429 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations. Yamasaki M; Takada A; Yamato O; Maede Y J Parasitol; 2005 Dec; 91(6):1287-92. PubMed ID: 16539007 [TBL] [Abstract][Full Text] [Related]
18. Transmembrane cationic fluxes in erythrocytes of diabetics and normal men. Lijnen P; Fenyvesi A Methods Find Exp Clin Pharmacol; 1994; 16(1):37-47. PubMed ID: 8164472 [TBL] [Abstract][Full Text] [Related]
19. Changes in erythrocyte contents of potassium, sodium and magnesium and Na, K-pump activity after the administration of potassium and magnesium salts. Sriboonlue P; Jaipakdee S; Jirakulsomchok D; Mairiang E; Tosukhowong P; Prasongwatana V; Savok S J Med Assoc Thai; 2004 Dec; 87(12):1506-12. PubMed ID: 15822549 [TBL] [Abstract][Full Text] [Related]
20. [Activity of the systems of transmembrane transport of Na+ (Na+-K+ ATPase, Na+-K+-Cl cotransport, Na+-Li+ countertransport and passive Na+ diffusion) in essential arterial hypertension]. de la Sierra A; Coca A; Aguilera MT; Vives JL; Ingelmo M; Urbano-Márquez A Med Clin (Barc); 1988 Feb; 90(5):186-9. PubMed ID: 2832663 [No Abstract] [Full Text] [Related] [Next] [New Search]