These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102. Standardized method for determining antimicrobial susceptibility of strains of Ureaplasma urealyticum and their response to tetracycline, erythromycin, and rosaramicin. Robertson JA; Coppola JE; Heisler OR Antimicrob Agents Chemother; 1981 Jul; 20(1):53-8. PubMed ID: 7283415 [TBL] [Abstract][Full Text] [Related]
103. Nationwide surveillance of the antimicrobial susceptibility of Chlamydia trachomatis from male urethritis in Japan: Comparison with the first surveillance report. Takahashi S; Yasuda M; Wada K; Matsumoto M; Hayami H; Kobayashi K; Miyazaki J; Kiyota H; Matsumoto T; Yotsuyanagi H; Tateda K; Sato J; Hanaki H; Masumori N; Hiyama Y; Egawa S; Yamada H; Matsumoto K; Ishikawa K; Yamamoto S; Togo Y; Tanaka K; Shigemura K; Uehara S; Kitano H; Kiyoshima K; Hamasuna R; Ito K; Hirayama H; Kawai S; Shiono Y; Maruyama T; Ito S; Yoh M; Ito M; Hatano K; Ihara H; Uno S; Monden K; Yokoyama T; Takayama K; Sumii T; Kadena H; Kawahara M; Hosobe T; Izumitani M; Kano M; Nishimura H; Fujita R; Kaji S; Hayashi K; Tojo T; Matumura M J Infect Chemother; 2022 Jan; 28(1):1-5. PubMed ID: 34580009 [TBL] [Abstract][Full Text] [Related]
104. In vitro and in vivo susceptibility of the Lyme disease spirochete, Borrelia burgdorferi, to four antimicrobial agents. Johnson RC; Kodner C; Russell M Antimicrob Agents Chemother; 1987 Feb; 31(2):164-7. PubMed ID: 3566246 [TBL] [Abstract][Full Text] [Related]
105. Molecular mechanisms of Mestrovic T; Ljubin-Sternak S Front Biosci (Landmark Ed); 2018 Jan; 23(4):656-670. PubMed ID: 28930567 [No Abstract] [Full Text] [Related]
106. In vitro activity of azithromycin against clinical isolates of Legionella species. Edelstein PH; Edelstein MA Antimicrob Agents Chemother; 1991 Jan; 35(1):180-1. PubMed ID: 1849708 [TBL] [Abstract][Full Text] [Related]
107. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Suchland RJ; Sandoz KM; Jeffrey BM; Stamm WE; Rockey DD Antimicrob Agents Chemother; 2009 Nov; 53(11):4604-11. PubMed ID: 19687238 [TBL] [Abstract][Full Text] [Related]
108. In vitro activity of rosaramicin against Chlamydia trachomatis. Bowie WR Antimicrob Agents Chemother; 1980 Dec; 18(6):978-9. PubMed ID: 7235684 [TBL] [Abstract][Full Text] [Related]
109. Antimicrobial activity of U-70138F (paldimycin), roxithromycin (RU 965), and ofloxacin (ORF 18489) against Chlamydia trachomatis in cell culture. Stamm WE; Suchland R Antimicrob Agents Chemother; 1986 Nov; 30(5):806-7. PubMed ID: 3467650 [TBL] [Abstract][Full Text] [Related]
110. In vitro activity of azithromycin compared with that of erythromycin against Actinobacillus actinomycetemcomitans. Pajukanta R; Asikainen S; Saarela M; Alaluusua S; Jousimies-Somer H Antimicrob Agents Chemother; 1992 Jun; 36(6):1241-3. PubMed ID: 1329617 [TBL] [Abstract][Full Text] [Related]
111. Synthesis and antimicrobial evaluation of dirithromycin (AS-E 136; LY237216), a new macrolide antibiotic derived from erythromycin. Counter FT; Ensminger PW; Preston DA; Wu CY; Greene JM; Felty-Duckworth AM; Paschal JW; Kirst HA Antimicrob Agents Chemother; 1991 Jun; 35(6):1116-26. PubMed ID: 1929252 [TBL] [Abstract][Full Text] [Related]
112. Impact of a low-oxygen environment on the efficacy of antimicrobials against intracellular Chlamydia trachomatis. Shima K; Szaszák M; Solbach W; Gieffers J; Rupp J Antimicrob Agents Chemother; 2011 May; 55(5):2319-24. PubMed ID: 21321137 [TBL] [Abstract][Full Text] [Related]
113. In vitro effects of spectinomycin and ceftriaxone alone or in combination with other antibiotics against Chlamydia trachomatis. Shang S; Xia L; Zhong M; Zhang J; Zhao J; Gong X; Mabey D; Wang Q Antimicrob Agents Chemother; 2005 Apr; 49(4):1584-6. PubMed ID: 15793145 [TBL] [Abstract][Full Text] [Related]
114. Rhein inhibits Yu X; Xu Q; Chen W; Mai Z; Mo L; Su X; Ou J; Lan Y; Zheng H; Xue Y Front Public Health; 2022; 10():1002029. PubMed ID: 36238249 [TBL] [Abstract][Full Text] [Related]
115. Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections. Vanić Ž; Rukavina Z; Manner S; Fallarero A; Uzelac L; Kralj M; Amidžić Klarić D; Bogdanov A; Raffai T; Virok DP; Filipović-Grčić J; Škalko-Basnet N Int J Nanomedicine; 2019; 14():5957-5976. PubMed ID: 31440052 [TBL] [Abstract][Full Text] [Related]
117. In vitro susceptibility of 30 strains of Chlamydia trachomatis to rosamicin. Smith TF; Washton HE Antimicrob Agents Chemother; 1978 Sep; 14(3):493-4. PubMed ID: 708027 [TBL] [Abstract][Full Text] [Related]
118. Chlorhexidine as an effective agent against Chlamydia trachomatis in vitro and in vivo. Nisbet IT; Graham DM; Spicer PE; Tibbs GJ Antimicrob Agents Chemother; 1979 Dec; 16(6):855-7. PubMed ID: 533265 [TBL] [Abstract][Full Text] [Related]
119. In vitro activity of a group of broad-spectrum cephalosporins and other beta-lactam antibiotics against Chlamydia trachomatis. Hammerschlag MR; Gleyzer A Antimicrob Agents Chemother; 1983 Mar; 23(3):493-4. PubMed ID: 6847175 [TBL] [Abstract][Full Text] [Related]
120. Activity of cathelicidin peptides against Chlamydia spp. Donati M; Di Leo K; Benincasa M; Cavrini F; Accardo S; Moroni A; Gennaro R; Cevenini R Antimicrob Agents Chemother; 2005 Mar; 49(3):1201-2. PubMed ID: 15728927 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]