These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1319423)

  • 1. Calibration of bone mineral and heavy metal measurements using doped wall-less gel phantoms of arbitrary form.
    Huang SB; Nilsson U; Mattsson S
    Int J Rad Appl Instrum A; 1992 Jun; 43(6):805-8. PubMed ID: 1319423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of bone mineral by photon scattering: calibration considerations.
    Leichter I; Karellas A; Shukla SS; Looper JL; Craven JD; Greenfield MA
    Med Phys; 1985; 12(4):466-8. PubMed ID: 4033593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration and standardization of bone mineral densitometers.
    Kelly TL; Slovik DM; Neer RM
    J Bone Miner Res; 1989 Oct; 4(5):663-9. PubMed ID: 2816511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent scattering and the assessment of mineral concentration in trabecular bone.
    Kerr SA; Kouris K; Webber CE; Kennett TJ
    Phys Med Biol; 1980 Nov; 25(6):1037-47. PubMed ID: 7208616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The accuracy and reproducibility of the measurement of bone mineral content by single-photon absorptiometry (125I). The effect of source strength].
    Cattaneo GM; Rinaldi GP; Rubinacci A
    Radiol Med; 1992; 83(1-2):54-8. PubMed ID: 1557545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom.
    Deuerling JM; Rudy DJ; Niebur GL; Roeder RK
    Med Phys; 2010 Sep; 37(9):5138-45. PubMed ID: 20964233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals.
    O'Meara JM; Chettle DR; McNeill FE; Prestwich WV; Svensson CE
    Phys Med Biol; 1998 Jun; 43(6):1413-28. PubMed ID: 9651014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of an anthropometric phantom used for calibrating in vivo K-XRF spectroscopy measurements of stable lead in bone.
    Lodwick CJ; Spitz HB
    Health Phys; 2008 Dec; 95(6):744-53. PubMed ID: 19001901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the precision of bone mineral measurements. Part 1: Review of experimentally derived results obtained from single photon absorptiometry.
    McDonald SP; Cormack J; Evill CA; Sage MR
    Australas Phys Eng Sci Med; 1990 Mar; 13(1):18-24. PubMed ID: 2337398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of dual-energy x-ray absorptiometry for bone density.
    Mazess RB; Trempe JA; Bisek JP; Hanson JA; Hans D
    J Bone Miner Res; 1991 Aug; 6(8):799-806. PubMed ID: 1785372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quantitative assessment of scattered photons considering skull bone in brain SPECT].
    Maeda S; Ogawa K
    Kaku Igaku; 1994 May; 31(5):431-9. PubMed ID: 8028215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The quantitative determination of bone mineral content--a system comparison of similarly built computed tomographs].
    Andresen R; Radmer S; Banzer D; Felsenberg D; Wolf KJ
    Rofo; 1994 Mar; 160(3):260-5. PubMed ID: 8136480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phantom studies in osteoporosis.
    Fischer M; Kempers B
    Eur J Nucl Med; 1993 May; 20(5):434-9. PubMed ID: 8519262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual photon absorptiometry using a gamma camera.
    Gledhill M; McQueen M
    Australas Phys Eng Sci Med; 1990 Sep; 13(3):129-31. PubMed ID: 2241638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel-doped agarose gel phantoms in MR imaging.
    Christoffersson JO; Olsson LE; Sjöberg S
    Acta Radiol; 1991 Sep; 32(5):426-31. PubMed ID: 1911001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.
    Krueger D; Libber J; Sanfilippo J; Yu HJ; Horvath B; Miller CG; Binkley N
    J Clin Densitom; 2016; 19(2):220-5. PubMed ID: 26071169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparisons between three dual-energy X-ray absorptiometers used for measuring spine and femur.
    Tothill P; Fenner JA; Reid DM
    Br J Radiol; 1995 Jun; 68(810):621-9. PubMed ID: 7627485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the effect of strontium, lead, and aluminum in bone on dual-energy x-ray absorptiometry and quantitative ultrasound measurements: A phantom study.
    Jang DH; Da Silva E; Tavakkoli J; Slatkovska L; Cheung AM; Pejović-Milić A
    Med Phys; 2018 Jan; 45(1):81-91. PubMed ID: 29080282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision.
    Lee DC; Hoffmann PF; Kopperdahl DL; Keaveny TM
    Bone; 2017 Oct; 103():325-333. PubMed ID: 28778598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of titanium endoprostheses on bone mineral density measurements, using quantitative computed tomography.
    Markel MD; Morin RL; Roy RG; Gottsauner-Wolf F; Chao EY
    Am J Vet Res; 1992 Nov; 53(11):2105-8. PubMed ID: 1466508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.