These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1319423)

  • 41. A system of calibrating microtomography for use in caries research.
    Schwass DR; Swain MV; Purton DG; Leichter JW
    Caries Res; 2009; 43(4):314-21. PubMed ID: 19556791
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multivariate calibration for quantitative analysis of EDXRD spectra from a bone phantom.
    Farquharson MJ; Luggar RD; Speller RD
    Appl Radiat Isot; 1997 Aug; 48(8):1075-82. PubMed ID: 9394438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bone-composition imaging using coherent-scatter computed tomography: assessing bone health beyond bone mineral density.
    Batchelar DL; Davidson MT; Dabrowski W; Cunningham IA
    Med Phys; 2006 Apr; 33(4):904-15. PubMed ID: 16696465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence.
    O'Meara JM; Fleming DE
    Phys Med Biol; 2009 Apr; 54(8):2449-61. PubMed ID: 19336842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Influence of bone marrow fat on the determination of bone mineral content by QCT].
    Ikeda T; Sakurai K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1994 Aug; 54(9):886-96. PubMed ID: 7936987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone mineral analysis using a Picker CT scanner.
    Brown G
    Radiogr Today; 1989 Aug; 55(627):13-5. PubMed ID: 2590449
    [No Abstract]   [Full Text] [Related]  

  • 48. Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography.
    Pickhardt PJ; Bodeen G; Brett A; Brown JK; Binkley N
    J Clin Densitom; 2015; 18(1):5-12. PubMed ID: 24880495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methods for Post Hoc Quantitative Computed Tomography Bone Density Calibration: Phantom-Only and Regression.
    Reeves JM; Knowles NK; Athwal GS; Johnson JA
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801170
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.
    Curtis TE; Roeder RK
    Med Phys; 2017 Oct; 44(10):5187-5197. PubMed ID: 28681402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT.
    Kalender WA; Felsenberg D; Genant HK; Fischer M; Dequeker J; Reeve J
    Eur J Radiol; 1995 Jul; 20(2):83-92. PubMed ID: 7588873
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New in-vivo calibration phantoms and their performance.
    Ishikawa T; Uchiyama M; Hoshi M; Takada J; Endo S; Sugiura N; Kosako T; Shimizu I
    Health Phys; 2002 Mar; 82(3):348-57. PubMed ID: 11845837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurement of phantomless thoracic bone mineral density on coronary artery calcium CT scans acquired with various CT scanner models.
    Budoff MJ; Malpeso JM; Zeb I; Gao YL; Li D; Choi TY; Dailing CA; Mao SS
    Radiology; 2013 Jun; 267(3):830-6. PubMed ID: 23440323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculated absorbed-dose ratios, TG51/TG21, for most widely used cylindrical and parallel-plate ion chambers over a range of photon and electron energies.
    Tailor RC; Hanson WF
    Med Phys; 2002 Jul; 29(7):1464-72. PubMed ID: 12148727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An X-ray fluorescence technique for in vivo determination of lead concentration in a bone matrix.
    Ahlgren L; Mattsson S
    Phys Med Biol; 1979 Jan; 24(1):136-45. PubMed ID: 432262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the Lawrence Livermore National Laboratory (LLNL) torso phantom by bone densitometry and x-ray.
    Kramer GH; Webber CE
    Int J Rad Appl Instrum A; 1992 Jun; 43(6):795-800. PubMed ID: 1319422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography.
    Nuzzo S; Peyrin F; Cloetens P; Baruchel J; Boivin G
    Med Phys; 2002 Nov; 29(11):2672-81. PubMed ID: 12462734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A modified TEW approach to scatter correction for In-111 and Tc-99m dual-isotope small-animal SPECT.
    Prior P; Timmins R; Petryk J; Strydhorst J; Duan Y; Wei L; Glenn Wells R
    Med Phys; 2016 Oct; 43(10):5503. PubMed ID: 27782731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A technique for measuring regional bone mineral density in human lumbar vertebral bodies.
    Cody DD; Flynn MJ; Vickers DS
    Med Phys; 1989; 16(5):766-72. PubMed ID: 2811758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo - Alpha and Delta models.
    Desouza ED; Gherase MR; Fleming DE; Chettle DR; O'Meara JM; McNeill FE
    Appl Radiat Isot; 2017 May; 123():82-93. PubMed ID: 28260610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.