These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 13198885)

  • 41. Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer.
    Allen TD; Kraus PF; Lawson PA; Drake GR; Balkwill DL; Tanner RS
    Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1313-7. PubMed ID: 18523171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis.
    Lloyd JR; Klessa DA; Parry DL; Buck P; Brown NL
    Water Res; 2004 Apr; 38(7):1822-30. PubMed ID: 15026237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide.
    Borisov VB; Forte E; Konstantinov AA; Poole RK; Sarti P; Giuffrè A
    FEBS Lett; 2004 Oct; 576(1-2):201-4. PubMed ID: 15474037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding.
    Belevich I; Borisov VB; Bloch DA; Konstantinov AA; Verkhovsky MI
    Biochemistry; 2007 Oct; 46(39):11177-84. PubMed ID: 17784736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial sulphate reduction during anaerobic digestion: EGSB process performance and potential for nitrite suppression of SRB activity.
    O'Reilly C; Colleran E
    Water Sci Technol; 2005; 52(1-2):371-6. PubMed ID: 16180452
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability.
    Belevich I; Borisov VB; Konstantinov AA; Verkhovsky MI
    FEBS Lett; 2005 Aug; 579(21):4567-70. PubMed ID: 16087180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase.
    Borisov VB; Forte E; Sarti P; Brunori M; Konstantinov AA; Giuffrè A
    FEBS Lett; 2006 Sep; 580(20):4823-6. PubMed ID: 16904110
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pH dependence of heme electrochemistry in cytochromes investigated by multiconformation continuum electrostatic calculations.
    Hauser K; Mao J; Gunner MR
    Biopolymers; 2004 May-Jun 5; 74(1-2):51-4. PubMed ID: 15137093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The ecology and biotechnology of sulphate-reducing bacteria.
    Muyzer G; Stams AJ
    Nat Rev Microbiol; 2008 Jun; 6(6):441-54. PubMed ID: 18461075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains.
    Cabrera G; Pérez R; Gómez JM; Abalos A; Cantero D
    J Hazard Mater; 2006 Jul; 135(1-3):40-6. PubMed ID: 16386832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Properties of cytochrome bd plastoquinol oxidase from the cyanobacterium Synechocystis sp. PCC 6803.
    Mogi T; Miyoshi H
    J Biochem; 2009 Mar; 145(3):395-401. PubMed ID: 19124292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The alternative oxidase of Yarrowia lipolytica mitochondria is unable to compete with the cytochrome pathway for electrons].
    Akimenko VK; Arinbasarova AIu; Smirnova NM; Medentsev AG
    Mikrobiologiia; 2003; 72(4):453-8. PubMed ID: 14526532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon monoxide and oxidative stress in Desulfovibrio desulfuricans B-1388.
    Davydova M; Sabirova R; Vylegzhanina N; Tarasova N
    J Biochem Mol Toxicol; 2004; 18(2):87-91. PubMed ID: 15122650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The oxidation of dimethylthetin and related compounds to sulphate in the rat.
    MAW GA
    Biochem J; 1953 Aug; 55(1):42-6. PubMed ID: 13093614
    [No Abstract]   [Full Text] [Related]  

  • 57. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
    Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC
    J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids.
    Takii S; Hanada S; Hase Y; Tamaki H; Uyeno Y; Sekiguchi Y; Matsuura K
    Int J Syst Evol Microbiol; 2008 Oct; 58(Pt 10):2433-8. PubMed ID: 18842870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of replacement of low-spin haem b by haem O on Escherichia coli cytochromes bo and bd quinol oxidases.
    Mogi T
    J Biochem; 2009 May; 145(5):599-607. PubMed ID: 19174546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterisation of a novel sulphate-reducing bacterium of the Desulfovibrio genus.
    Feio MJ; Beech IB; Carepo M; Lopes JM; Cheung CW; Franco R; Guezennec J; Smith JR; Mitchell JI; Moura JJ; Lino AR
    Anaerobe; 1998 Apr; 4(2):117-30. PubMed ID: 16887631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.