BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1320248)

  • 1. Angiotensin II and acetylcholine differentially activate mobilization of inositol phosphates in Xenopus laevis ovarian follicles.
    Lacy P; Murray-McIntosh RP; McIntosh JE
    Pflugers Arch; 1992 Feb; 420(2):127-35. PubMed ID: 1320248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates.
    Catt KJ; Balla T; Baukal AJ; Hausdorff WP; Aguilera G
    Clin Exp Pharmacol Physiol; 1988 Jul; 15(7):501-15. PubMed ID: 3152162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity in responses from endogenous and expressed mammalian receptors which cause chloride ion efflux from ovarian follicles of Xenopus laevis.
    McIntosh RP; McIntosh JE
    Arch Biochem Biophys; 1990 Nov; 283(1):135-40. PubMed ID: 2241166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5-trisphosphate-dependent mechanism.
    Sandberg K; Ji H; Iida T; Catt KJ
    J Cell Biol; 1992 Apr; 117(1):157-67. PubMed ID: 1556150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of the biologically active inositol phosphates Ins(1,4,5)P3 and Ins(1,3,4,5)P4 by ovarian follicles of Xenopus laevis.
    McIntosh RP; McIntosh JE
    Biochem J; 1990 May; 268(1):141-5. PubMed ID: 2160808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential activation of inositol 1,4,5-trisphosphate-sensitive calcium pools by muscarinic receptors in Xenopus laevis oocytes.
    Ji H; Sandberg K; Bonner TI; Catt KJ
    Cell Calcium; 1993 Oct; 14(9):649-62. PubMed ID: 8242720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of inositol trisphosphates and inositol tetrakisphosphate on Ca2+ release and Cl- current pattern in the Xenopus laevis oocyte.
    Ferguson JE; Han JK; Kao JP; Nuccitelli R
    Exp Cell Res; 1991 Feb; 192(2):352-65. PubMed ID: 1846334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist-activated Ca2+ influx and Ca2+ -dependent Cl- channels in Xenopus ovarian follicular cells: functional heterogeneity within the cell monolayer.
    Arellano RO; Robles-Martínez L; Serrano-Flores B; Vázquez-Cuevas F; Garay E
    J Cell Physiol; 2012 Oct; 227(10):3457-70. PubMed ID: 22213197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet-derived growth factor and angiotensin II cause increases in cytosolic free calcium by different mechanisms in vascular smooth muscle cells.
    Roe MW; Hepler JR; Harden TK; Herman B
    J Cell Physiol; 1989 Apr; 139(1):100-8. PubMed ID: 2708448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes.
    Arellano RO; Miledi R
    J Gen Physiol; 1993 Nov; 102(5):833-57. PubMed ID: 8301259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inositol phosphate formation and chloride current responses induced by acetylcholine and serotonin through GTP-binding proteins in Xenopus oocyte after injection of rat brain messenger RNA.
    Nomura Y; Kaneko S; Kato K; Yamagishi S; Sugiyama H
    Brain Res; 1987 Jul; 388(2):113-23. PubMed ID: 2887235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II receptors in Xenopus oocytes.
    Woodward RM; Miledi R
    Proc Biol Sci; 1991 Apr; 244(1309):11-9. PubMed ID: 1712970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of inositol pentakisphosphate by ovarian follicles of Xenopus laevis from metabolism of inositol (1,4,5)trisphosphate and inositol (1,3,4,5)tetrakisphosphate and from receptor activation.
    McIntosh RP; McIntosh JE
    Biochem Biophys Res Commun; 1990 Jan; 166(1):380-6. PubMed ID: 2154206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II receptors and mechanisms of action in adrenal glomerulosa cells.
    Catt KJ; Carson MC; Hausdorff WP; Leach-Harper CM; Baukal AJ; Guillemette G; Balla T; Aguilera G
    J Steroid Biochem; 1987; 27(4-6):915-27. PubMed ID: 2826911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II-induced fluid phase endocytosis in human cerebromicrovascular endothelial cells is regulated by the inositol-phosphate signaling pathway.
    Stanimirovic D; Morley P; Ball R; Hamel E; Mealing G; Durkin JP
    J Cell Physiol; 1996 Dec; 169(3):455-67. PubMed ID: 8952695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the epidermal growth factor receptor and non-tyrosine kinase hormone receptors stimulate phosphoinositide hydrolysis by independent pathways.
    Hepler JR; Jeffs RA; Huckle WR; Outlaw HE; Rhee SG; Earp HS; Harden TK
    Biochem J; 1990 Sep; 270(2):337-44. PubMed ID: 1698055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of inositol 1,3,4,5-tetrakisphosphate in internal Ca2+ mobilization following histamine H1 receptor stimulation in DDT1 MF-2 cells.
    Van der Zee L; Sipma H; Nelemans A; Den Hertog A
    Eur J Pharmacol; 1995 May; 289(3):463-9. PubMed ID: 7556415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysophosphatidic acid induces inositol phosphate and calcium signals in exocrine cells from the avian nasal salt gland.
    Hildebrandt JP
    J Membr Biol; 1995 Mar; 144(1):49-58. PubMed ID: 7595941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol tetrakisphosphate liberates stored Ca2+ in Xenopus oocytes and facilitates responses to inositol trisphosphate.
    Parker I; Ivorra I
    J Physiol; 1991 Feb; 433():207-27. PubMed ID: 1841939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PTH elevates inositol polyphosphates and diacylglycerol in a rat osteoblast-like cell line.
    Civitelli R; Reid IR; Westbrook S; Avioli LV; Hruska KA
    Am J Physiol; 1988 Nov; 255(5 Pt 1):E660-7. PubMed ID: 3263806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.