These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1320309)

  • 1. GABA receptor-mediated modification of reticulo-ruminal myoelectrical activity in sheep.
    Brikas P
    Zentralbl Veterinarmed A; 1992 Apr; 39(3):161-7. PubMed ID: 1320309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Types of serotonergic receptors involved in the control of reticulo-ruminal myoelectric activity in sheep.
    Brikas P; Fioramonti J; Bueno L
    J Vet Pharmacol Ther; 1994 Oct; 17(5):345-52. PubMed ID: 7853458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of GABA receptors in the control of the omasal myoelectrical activity in sheep.
    Brikas P
    Res Vet Sci; 1994 Jan; 56(1):69-74. PubMed ID: 8146456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adrenergic receptors in the control of reticulo-ruminal myoelectrical activity in sheep.
    Brikas P
    Zentralbl Veterinarmed A; 1989 Jul; 36(6):402-10. PubMed ID: 2508369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central and peripheral beta-adrenergic influences on reticulo-rumen and upper-gut myoelectrical activity in sheep.
    Brikas P; Buéno L; Fioramonti J
    J Vet Pharmacol Ther; 1989 Dec; 12(4):430-7. PubMed ID: 2559213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central and peripheral action of GABAA and GABAB agonists on small intestine motility in rats.
    Fargeas MJ; Fioramonti J; Bueno L
    Eur J Pharmacol; 1988 May; 150(1-2):163-9. PubMed ID: 2841141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of intrinsic reticulo-ruminal motility in the vagotomized sheep.
    Gregory PC
    J Physiol; 1984 Jan; 346():379-93. PubMed ID: 6699779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of reticulo-ruminal motility by volatile fatty acids and lactic acid in sheep.
    Gregory PC
    J Physiol; 1987 Jan; 382():355-71. PubMed ID: 3625553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of dopamine on rumino-reticular motility and rumination in sheep.
    Buéno L; Sorraing JM; Fioramonti J
    J Vet Pharmacol Ther; 1983 Jun; 6(2):93-8. PubMed ID: 6887345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central and local actions of opioids upon reticulo-ruminal motility in sheep.
    Maas CL; Leek BF
    Vet Res Commun; 1985 Apr; 9(2):89-113. PubMed ID: 2408375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that changes in the function of the subtypes of the receptors for gamma-amino butyric acid may be involved in the seasonal changes in the negative-feedback effects of estrogen on gonadotropin-releasing hormone secretion and plasma luteinizing hormone levels in the ewe.
    Scott CJ; Clarke IJ
    Endocrinology; 1993 Dec; 133(6):2904-12. PubMed ID: 8243318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons.
    Obrietan K; van den Pol AN
    J Neurophysiol; 1998 Mar; 79(3):1360-70. PubMed ID: 9497417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAB-ergic stimulation in hypothalamic pressor area induces larger sympathetic and cardiovascular depression in spontaneously hypertensive rats.
    Takenaka K; Sasaki S; Uchida A; Fujita H; Nakamura K; Ichida T; Itoh H; Nakata T; Takeda K; Nakagawa M
    Am J Hypertens; 1996 Oct; 9(10 Pt 1):964-72. PubMed ID: 8896648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition.
    Lin Q; Peng YB; Willis WD
    J Neurophysiol; 1996 Jan; 75(1):109-23. PubMed ID: 8822545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral GABAA receptor-mediated effects of sodium valproate on dural plasma protein extravasation to substance P and trigeminal stimulation.
    Lee WS; Limmroth V; Ayata C; Cutrer FM; Waeber C; Yu X; Moskowitz MA
    Br J Pharmacol; 1995 Sep; 116(1):1661-7. PubMed ID: 8564234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAA and GABAB receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour.
    Akiyama G; Ikeda H; Matsuzaki S; Sato M; Moribe S; Koshikawa N; Cools AR
    Neuropharmacology; 2004 Jun; 46(8):1082-8. PubMed ID: 15111014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory and inhibitory responses mediated by GABAA and GABAB receptors in guinea pig distal colon.
    Minocha A; Galligan JJ
    Eur J Pharmacol; 1993 Jan; 230(2):187-93. PubMed ID: 8380770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A possible central opiate mechanism involved in the inhibition of food intake and reticular motility by duodenal DL-lactic acid infusion in sheep.
    Duranton A; Buéno L
    Am J Vet Res; 1983 May; 44(5):802-5. PubMed ID: 6307087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic modulation of striatal cholinergic interneurons: an in vivo microdialysis study.
    DeBoer P; Westerink BH
    J Neurochem; 1994 Jan; 62(1):70-5. PubMed ID: 8263546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.