These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1320369)

  • 1. Glucose toxicity and inability of Bacteroides ruminicola to regulate glucose transport and utilization.
    Russell JB
    Appl Environ Microbiol; 1992 Jun; 58(6):2040-5. PubMed ID: 1320369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose toxicity in Prevotella ruminicola: methylglyoxal accumulation and its effect on membrane physiology.
    Russell JB
    Appl Environ Microbiol; 1993 Sep; 59(9):2844-50. PubMed ID: 8215358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid uptake systems in Bacteroides ruminicola.
    Stevenson RM
    Can J Microbiol; 1979 Oct; 25(10):1161-8. PubMed ID: 575310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis.
    Allison MJ; Baetz AL; Wiegel J
    Appl Environ Microbiol; 1984 Dec; 48(6):1111-7. PubMed ID: 6440485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some growth and metabolic characteristics of monensin-sensitive and monensin-resistant strains of Prevotella (Bacteroides) ruminicola.
    Morehead MC; Dawson KA
    Appl Environ Microbiol; 1992 May; 58(5):1617-23. PubMed ID: 1622231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes.
    Maas LK; Glass TL
    Can J Microbiol; 1991 Feb; 37(2):141-7. PubMed ID: 2059920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEPTIDES AND OTHER NITROGEN SOURCES FOR GROWTH OF BACTEROIDES RUMINICOLA.
    PITTMAN KA; BRYANT MP
    J Bacteriol; 1964 Aug; 88(2):401-10. PubMed ID: 14203357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonia saturation constants for predominant species of rumen bacteria.
    Schaefer DM; Davis CL; Bryant MP
    J Dairy Sci; 1980 Aug; 63(8):1248-63. PubMed ID: 7419777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy.
    Russell JB
    J Bacteriol; 1986 Nov; 168(2):694-701. PubMed ID: 3782021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
    Strobel HJ
    Arch Microbiol; 1993; 159(5):465-71. PubMed ID: 8484709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism and growth yields in Bacteroides ruminicola strain b14.
    Howlett MR; Mountfort DO; Turner KW; Roberton AM
    Appl Environ Microbiol; 1976 Aug; 32(2):274-83. PubMed ID: 970946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of fermentation products formed during growth of Bacteroides ruminicola on glucose.
    Mountfort DO; Roberton AM
    J Gen Microbiol; 1978 Jun; 106(2):353-60. PubMed ID: 670931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium.
    Scheifinger CC; Wolin MJ
    Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of carbon dioxide on growth and maltose fermentation by Bacteroides amylophilus.
    Caldwell DR; Keeney M; Van Soest PJ
    J Bacteriol; 1969 May; 98(2):668-76. PubMed ID: 5814705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies that ruminal bacteria use to handle excess carbohydrate.
    Russell JB
    J Anim Sci; 1998 Jul; 76(7):1955-63. PubMed ID: 9690652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria.
    Russell JB; Sniffen CJ; Van Soest PJ
    J Dairy Sci; 1983 Apr; 66(4):763-75. PubMed ID: 6853798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1987 Oct; 53(10):2505-10. PubMed ID: 3122655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of ammonia nitrogen by intestinal bacteria isolated from pigs.
    Takahashi M; Benno Y; Mitsuoka T
    Appl Environ Microbiol; 1980 Jan; 39(1):30-5. PubMed ID: 7356320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola.
    Turner KW; Roberton AM
    Appl Environ Microbiol; 1979 Jul; 38(1):7-12. PubMed ID: 485153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.