BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

734 related articles for article (PubMed ID: 1320378)

  • 41. Purified leukocyte cytochrome b558 incorporated into liposomes catalyzes a cytosolic factor dependent diaphorase activity.
    Li J; Guillory RJ
    Biochemistry; 1997 May; 36(18):5529-37. PubMed ID: 9154936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploration of the diaphorase activity of neutrophil NADPH oxidase.
    Poinas A; Gaillard J; Vignais P; Doussiere J
    Eur J Biochem; 2002 Feb; 269(4):1243-52. PubMed ID: 11856358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytochrome b and FAD content in polymorphonuclear leucocytes in a family with X-linked chronic granulomatous disease.
    Riccardi S; Giordano D; Schettini F; De Mattia D; Lovecchio T; Santoro N; Fumarulo R
    Scand J Haematol; 1986 Oct; 37(4):333-6. PubMed ID: 3787183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification of the solubilized NADPH:O2 oxidoreductase of human neutrophils. Isolation of its catalytically inactive cytochrome b and flavoprotein redox centers.
    Green TR; Pratt KL
    J Biol Chem; 1988 Apr; 263(12):5617-23. PubMed ID: 3356702
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of the NADPH-oxidase: membrane components.
    Segal AW
    Immunodeficiency; 1993; 4(1-4):167-79. PubMed ID: 8167695
    [No Abstract]   [Full Text] [Related]  

  • 46. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Critical assessment of the presence of an NADPH binding site on neutrophil cytochrome b558 by photoaffinity and immunochemical labeling.
    Doussiere J; Brandolin G; Derrien V; Vignais PV
    Biochemistry; 1993 Aug; 32(34):8880-7. PubMed ID: 8364034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism.
    Vignais PV
    Cell Mol Life Sci; 2002 Sep; 59(9):1428-59. PubMed ID: 12440767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular analysis in three cases of X91- variant chronic granulomatous disease.
    Bu-Ghanim HN; Segal AW; Keep NH; Casimir CM
    Blood; 1995 Nov; 86(9):3575-82. PubMed ID: 7579466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component.
    Doussière J; Gaillard J; Vignais PV
    Biochemistry; 1996 Oct; 35(41):13400-10. PubMed ID: 8873608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558).
    Nisimoto Y; Motalebi S; Han CH; Lambeth JD
    J Biol Chem; 1999 Aug; 274(33):22999-3005. PubMed ID: 10438466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a thermolabile component of the human neutrophil NADPH oxidase. A model for chronic granulomatous disease caused by deficiency of the p67-phox cytosolic component.
    Erickson RW; Malawista SE; Garrett MC; Van Blaricom G; Leto TL; Curnutte JT
    J Clin Invest; 1992 May; 89(5):1587-95. PubMed ID: 1314852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Presence of cytochrome b-245 in NADPH oxidase preparations from human neutrophils.
    Bellavite P; Cassatella MA; Papini E; Megyeri P; Rossi F
    FEBS Lett; 1986 Apr; 199(2):159-63. PubMed ID: 3699149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558).
    Cross AR
    Biochem J; 2000 Jul; 349(Pt 1):113-7. PubMed ID: 10861218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries.
    DeLeo FR; Yu L; Burritt JB; Loetterle LR; Bond CW; Jesaitis AJ; Quinn MT
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):7110-4. PubMed ID: 7624379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of superoxide dismutase-insensitive cytochrome c reductase activity in HL-60 cytosol as NADPH-cytochrome P450 reductase.
    Nisimoto Y; Otsuka-Murakami H; Iwata S; Isogai Y; Iizuka T
    Arch Biochem Biophys; 1993 May; 302(2):315-21. PubMed ID: 8489236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Despite structural similarities between gp91phox and FRE1, flavocytochrome b558 does not mediate iron uptake by myeloid cells.
    DeLeo FR; Olakanmi O; Rasmussen GT; Lewis TS; McCormick SJ; Nauseef WM; Britigan BE
    J Lab Clin Med; 1999 Sep; 134(3):275-82. PubMed ID: 10482313
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular heterogeneity in chronic granulomatous disease: a human model of defective phagocyte superoxide production.
    Gabig TG; Lefker BA
    J Free Radic Biol Med; 1985; 1(1):65-9. PubMed ID: 3013973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.