These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

733 related articles for article (PubMed ID: 1320378)

  • 41. Purified leukocyte cytochrome b558 incorporated into liposomes catalyzes a cytosolic factor dependent diaphorase activity.
    Li J; Guillory RJ
    Biochemistry; 1997 May; 36(18):5529-37. PubMed ID: 9154936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploration of the diaphorase activity of neutrophil NADPH oxidase.
    Poinas A; Gaillard J; Vignais P; Doussiere J
    Eur J Biochem; 2002 Feb; 269(4):1243-52. PubMed ID: 11856358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytochrome b and FAD content in polymorphonuclear leucocytes in a family with X-linked chronic granulomatous disease.
    Riccardi S; Giordano D; Schettini F; De Mattia D; Lovecchio T; Santoro N; Fumarulo R
    Scand J Haematol; 1986 Oct; 37(4):333-6. PubMed ID: 3787183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification of the solubilized NADPH:O2 oxidoreductase of human neutrophils. Isolation of its catalytically inactive cytochrome b and flavoprotein redox centers.
    Green TR; Pratt KL
    J Biol Chem; 1988 Apr; 263(12):5617-23. PubMed ID: 3356702
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of the NADPH-oxidase: membrane components.
    Segal AW
    Immunodeficiency; 1993; 4(1-4):167-79. PubMed ID: 8167695
    [No Abstract]   [Full Text] [Related]  

  • 46. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Critical assessment of the presence of an NADPH binding site on neutrophil cytochrome b558 by photoaffinity and immunochemical labeling.
    Doussiere J; Brandolin G; Derrien V; Vignais PV
    Biochemistry; 1993 Aug; 32(34):8880-7. PubMed ID: 8364034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism.
    Vignais PV
    Cell Mol Life Sci; 2002 Sep; 59(9):1428-59. PubMed ID: 12440767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular analysis in three cases of X91- variant chronic granulomatous disease.
    Bu-Ghanim HN; Segal AW; Keep NH; Casimir CM
    Blood; 1995 Nov; 86(9):3575-82. PubMed ID: 7579466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component.
    Doussière J; Gaillard J; Vignais PV
    Biochemistry; 1996 Oct; 35(41):13400-10. PubMed ID: 8873608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558).
    Nisimoto Y; Motalebi S; Han CH; Lambeth JD
    J Biol Chem; 1999 Aug; 274(33):22999-3005. PubMed ID: 10438466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a thermolabile component of the human neutrophil NADPH oxidase. A model for chronic granulomatous disease caused by deficiency of the p67-phox cytosolic component.
    Erickson RW; Malawista SE; Garrett MC; Van Blaricom G; Leto TL; Curnutte JT
    J Clin Invest; 1992 May; 89(5):1587-95. PubMed ID: 1314852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Presence of cytochrome b-245 in NADPH oxidase preparations from human neutrophils.
    Bellavite P; Cassatella MA; Papini E; Megyeri P; Rossi F
    FEBS Lett; 1986 Apr; 199(2):159-63. PubMed ID: 3699149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558).
    Cross AR
    Biochem J; 2000 Jul; 349(Pt 1):113-7. PubMed ID: 10861218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries.
    DeLeo FR; Yu L; Burritt JB; Loetterle LR; Bond CW; Jesaitis AJ; Quinn MT
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):7110-4. PubMed ID: 7624379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of superoxide dismutase-insensitive cytochrome c reductase activity in HL-60 cytosol as NADPH-cytochrome P450 reductase.
    Nisimoto Y; Otsuka-Murakami H; Iwata S; Isogai Y; Iizuka T
    Arch Biochem Biophys; 1993 May; 302(2):315-21. PubMed ID: 8489236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Despite structural similarities between gp91phox and FRE1, flavocytochrome b558 does not mediate iron uptake by myeloid cells.
    DeLeo FR; Olakanmi O; Rasmussen GT; Lewis TS; McCormick SJ; Nauseef WM; Britigan BE
    J Lab Clin Med; 1999 Sep; 134(3):275-82. PubMed ID: 10482313
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular heterogeneity in chronic granulomatous disease: a human model of defective phagocyte superoxide production.
    Gabig TG; Lefker BA
    J Free Radic Biol Med; 1985; 1(1):65-9. PubMed ID: 3013973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.