These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1320696)

  • 1. Energy metabolism of the human fallopian tube.
    Brewis IA; Winston RM; Leese HJ
    J Reprod Fertil; 1992 May; 95(1):257-62. PubMed ID: 1320696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity of enzymes of energy metabolism in single human preimplantation embryos.
    Martin KL; Hardy K; Winston RM; Leese HJ
    J Reprod Fertil; 1993 Sep; 99(1):259-66. PubMed ID: 8283448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic?
    Gstraunthaler G; Seppi T; Pfaller W
    Cell Physiol Biochem; 1999; 9(3):150-72. PubMed ID: 10494029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuel utilization in colonocytes of the rat.
    Ardawi MS; Newsholme EA
    Biochem J; 1985 Nov; 231(3):713-9. PubMed ID: 4074334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat.
    Ardawi MS; Newsholme EA
    Biochem J; 1982 Dec; 208(3):743-8. PubMed ID: 7165729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes of energy metabolism in the mudpuppy retina.
    Dick E
    J Neurochem; 1984 Oct; 43(4):1124-31. PubMed ID: 6236283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daily changes in parameters of energy metabolism in brain of rainbow trout: dependence on feeding.
    Polakof S; Ceinos RM; Fernández-Durán B; Míguez JM; Soengas JL
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Feb; 146(2):265-73. PubMed ID: 17126577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose, glutamine, and ketone-body metabolism in human enterocytes.
    Ashy AA; Salleh M; Ardawi M
    Metabolism; 1988 Jun; 37(6):602-9. PubMed ID: 3374327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos.
    Rieger D; Grisart B; Semple E; Van Langendonckt A; Betteridge KJ; Dessy F
    J Reprod Fertil; 1995 Sep; 105(1):91-8. PubMed ID: 7490721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates.
    Crabtree B; Newsholme EA
    Biochem J; 1972 Jan; 126(1):49-58. PubMed ID: 4342385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages.
    Newsholme P; Curi R; Gordon S; Newsholme EA
    Biochem J; 1986 Oct; 239(1):121-5. PubMed ID: 3800971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transport and metabolism in rabbit oviduct epithelial cells.
    Edwards LJ; Leese HJ
    J Reprod Fertil; 1993 Nov; 99(2):585-91. PubMed ID: 8107043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal changes in the activities of glycolytic enzymes from liver and skeletal muscle of Rana perezi.
    Molina R; Mendiola P; de Costa J
    Rev Esp Fisiol; 1987 Dec; 43(4):497-502. PubMed ID: 2834804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum activities of key glycolytic and oxidative enzymes in human muscle from differently trained individuals.
    Blomstrand E; Ekblom B; Newsholme EA
    J Physiol; 1986 Dec; 381():111-8. PubMed ID: 2957491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats.
    Sauer LA; Dauchy RT
    Cancer Res; 1983 Aug; 43(8):3497-503. PubMed ID: 6861121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells.
    Ahmed N; Williams JF; Weidemann MJ
    Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes.
    Fillat C; Rodríguez-Gil JE; Guinovart JJ
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):659-63. PubMed ID: 1313228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impairment of respiration by glycolysis in the Lewis lung carcinoma.
    Miralpeix M; Azcon-Bieto J; Bartrons R; Argiles JM
    Cancer Lett; 1990 Apr; 50(3):173-8. PubMed ID: 2157546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: a comparative study.
    Pithon-Curi TC; De Melo MP; Curi R
    Cell Biochem Funct; 2004; 22(5):321-6. PubMed ID: 15338472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.