These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1320927)

  • 21. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a cysteine involved in the interaction between carbon monoxide dehydrogenase and corrinoid/Fe-S protein from Clostridium thermoaceticum.
    Shanmugasundaram T; Sundaresh CS; Kumar GK
    FEBS Lett; 1993 Jul; 326(1-3):281-4. PubMed ID: 8325380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps.
    Roberts JR; Lu WP; Ragsdale SW
    J Bacteriol; 1992 Jul; 174(14):4667-76. PubMed ID: 1624454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme.
    Ragsdale SW; Ljungdahl LG; DerVartanian DV
    J Bacteriol; 1983 Sep; 155(3):1224-37. PubMed ID: 6309745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate and cofactor reactivity of a carbon monoxide dehydrogenase-corrinoid enzyme complex: stepwise reduction of iron-sulfur and corrinoid centers, the corrinoid Co2+/1+ redox midpoint potential, and overall synthesis of acetyl-CoA.
    Grahame DA
    Biochemistry; 1993 Oct; 32(40):10786-93. PubMed ID: 8399227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry.
    Jablonski PE; Lu WP; Ragsdale SW; Ferry JG
    J Biol Chem; 1993 Jan; 268(1):325-9. PubMed ID: 8380157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum.
    Ragsdale SW; Wood HG; Antholine WE
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6811-4. PubMed ID: 2995986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase.
    Wittenborn EC; Merrouch M; Ueda C; Fradale L; Léger C; Fourmond V; Pandelia ME; Dementin S; Drennan CL
    Elife; 2018 Oct; 7():. PubMed ID: 30277213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase.
    Ensign SA; Ludden PW
    J Biol Chem; 1991 Sep; 266(27):18395-403. PubMed ID: 1917963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states.
    Spangler NJ; Meyers MR; Gierke KL; Kerby RL; Roberts GP; Ludden PW
    J Biol Chem; 1998 Feb; 273(7):4059-64. PubMed ID: 9461598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans.
    Svetlitchnyi V; Peschel C; Acker G; Meyer O
    J Bacteriol; 2001 Sep; 183(17):5134-44. PubMed ID: 11489867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox-dependent CO2 reduction activity of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Staples CR; Ludden PW
    Biochemistry; 2001 Jun; 40(25):7604-11. PubMed ID: 11412114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron paramagnetic resonance studies of the tungsten-containing formate dehydrogenase from Clostridium thermoaceticum.
    Deaton JC; Solomon EI; Watt GD; Wetherbee PJ; Durfor CN
    Biochem Biophys Res Commun; 1987 Dec; 149(2):424-30. PubMed ID: 2827642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Halbleib CM; Ludden PW
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7690-3. PubMed ID: 11416171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decomposition of carbon monoxide dehydrogenase into alpha metallosubunits and a catalytically-active form consisting primarily of beta metallosubunits.
    Xia J; Lindahl PA
    Biochemistry; 1995 May; 34(18):6037-42. PubMed ID: 7742306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of ferredoxin with carbon monoxide dehydrogenase from Clostridium thermoaceticum.
    Shanmugasundaram T; Wood HG
    J Biol Chem; 1992 Jan; 267(2):897-900. PubMed ID: 1730678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a proposed intermediate redox state in the CO/CO(2) active site of acetyl-CoA synthase (Carbon monoxide dehydrogenase) from Clostridium thermoaceticum.
    Fraser DM; Lindahl PA
    Biochemistry; 1999 Nov; 38(48):15706-11. PubMed ID: 10625436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification.
    Shin W; Lindahl PA
    Biochim Biophys Acta; 1993 Feb; 1161(2-3):317-22. PubMed ID: 8381672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.