These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 1320937)
1. Non-redox protein interactions in the thioredoxin activation of chloroplast enzymes. Häberlein I; Würfel M; Follmann H Biochim Biophys Acta; 1992 Jun; 1121(3):293-6. PubMed ID: 1320937 [TBL] [Abstract][Full Text] [Related]
2. Redox equilibria between the regulatory thiols of light/dark-modulated chloroplast enzymes and dithiothreitol: fine-tuning by metabolites. Faske M; Holtgrefe S; Ocheretina O; Meister M; Backhausen JE; Scheibe R Biochim Biophys Acta; 1995 Feb; 1247(1):135-42. PubMed ID: 7873583 [TBL] [Abstract][Full Text] [Related]
3. Human thioredoxin reactivity-structure/function relationship. Jacquot JP; de Lamotte F; Fontecave M; Schürmann P; Decottignies P; Miginiac-Maslow M; Wollman E Biochem Biophys Res Commun; 1990 Dec; 173(3):1375-81. PubMed ID: 2176490 [TBL] [Abstract][Full Text] [Related]
4. Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1, 6-bisphosphatase by mutant Escherichia coli thioredoxins. Mora-García S; Rodríguez-Suárez R; Wolosiuk RA J Biol Chem; 1998 Jun; 273(26):16273-80. PubMed ID: 9632687 [TBL] [Abstract][Full Text] [Related]
5. Mutation of a negatively charged amino acid in thioredoxin modifies its reactivity with chloroplastic enzymes. de Lamotte-Guery F; Miginiac-Maslow M; Decottignies P; Stein M; Minard P; Jacquot JP Eur J Biochem; 1991 Mar; 196(2):287-94. PubMed ID: 1848815 [TBL] [Abstract][Full Text] [Related]
6. Chloroplast fructose-1,6-bisphosphatase: modification of non-covalent interactions promote the activation by chimeric Escherichia coli thioredoxins. Mora-García S; Ballícora MA; Wolosiuk RA FEBS Lett; 1996 Feb; 380(1-2):123-6. PubMed ID: 8603719 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of chilling-induced photooxidation on the redox regulation of photosynthetic enzymes. Hutchison RS; Groom Q; Ort DR Biochemistry; 2000 Jun; 39(22):6679-88. PubMed ID: 10828986 [TBL] [Abstract][Full Text] [Related]
8. Concerted action of cosolvents, chaotropic anions and thioredoxin on chloroplast fructose-1,6-bisphosphatase. Reactivity to iodoacetamide. Stein M; Lazaro JJ; Wolosiuk RA Eur J Biochem; 1989 Nov; 185(2):425-31. PubMed ID: 2555190 [TBL] [Abstract][Full Text] [Related]
9. Enzyme regulation in C4 photosynthesis: purification, properties, and activities of thioredoxins from C4 and C3 plants. Crawford NA; Yee BC; Hutcheson SW; Wolosiuk RA; Buchanan BB Arch Biochem Biophys; 1986 Jan; 244(1):1-15. PubMed ID: 3004333 [TBL] [Abstract][Full Text] [Related]
10. Identification of residues of spinach thioredoxin f that influence interactions with target enzymes. Geck MK; Larimer FW; Hartman FC J Biol Chem; 1996 Oct; 271(40):24736-40. PubMed ID: 8798742 [TBL] [Abstract][Full Text] [Related]
11. Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana. Yoshida K; Matsuoka Y; Hara S; Konno H; Hisabori T Plant Cell Physiol; 2014 Aug; 55(8):1415-25. PubMed ID: 24850837 [TBL] [Abstract][Full Text] [Related]
12. Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADP-malate dehydrogenase provides a structural basis for the relief of autoinhibition. Krimm I; Goyer A; Issakidis-Bourguet E; Miginiac-Maslow M; Lancelin JM J Biol Chem; 1999 Dec; 274(49):34539-42. PubMed ID: 10574915 [TBL] [Abstract][Full Text] [Related]
13. Thiol/disulfide exchange in the thioredoxin-catalyzed reductive activation of spinach chloroplast fructose-1,6-bisphosphatase. Kinetics and thermodynamics. Clancey CJ; Gilbert HF J Biol Chem; 1987 Oct; 262(28):13545-9. PubMed ID: 2820974 [TBL] [Abstract][Full Text] [Related]
14. Chloroplast NADP-malate dehydrogenase: structural basis of light-dependent regulation of activity by thiol oxidation and reduction. Carr PD; Verger D; Ashton AR; Ollis DL Structure; 1999 Apr; 7(4):461-75. PubMed ID: 10196131 [TBL] [Abstract][Full Text] [Related]
15. Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts. Crawford NA; Droux M; Kosower NS; Buchanan BB Arch Biochem Biophys; 1989 May; 271(1):223-39. PubMed ID: 2653221 [TBL] [Abstract][Full Text] [Related]
16. Regulation of NADP-malate dehydrogenase in C4 plants: relationship among enzyme activity, NADPH to NADP ratios, and thioredoxin redox states in intact maize mesophyll chloroplasts. Rebeille F; Hatch MD Arch Biochem Biophys; 1986 Aug; 249(1):171-9. PubMed ID: 3740850 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterization of pea thioredoxin f expressed in Escherichia coli. Hodges M; Miginiac-Maslow M; Decottignies P; Jacquot JP; Stein M; Lepiniec L; Crétin C; Gadal P Plant Mol Biol; 1994 Oct; 26(1):225-34. PubMed ID: 7948872 [TBL] [Abstract][Full Text] [Related]
18. An internal cysteine is involved in the thioredoxin-dependent activation of sorghum leaf NADP-malate dehydrogenase. Ruelland E; Lemaire-Chamley M; Le Maréchal P; Issakidis-Bourguet E; Djukic N; Miginiac-Maslow M J Biol Chem; 1997 Aug; 272(32):19851-7. PubMed ID: 9242647 [TBL] [Abstract][Full Text] [Related]
19. How does light regulate chloroplast enzymes? Structure-function studies of the ferredoxin/thioredoxin system. Dai S; Schwendtmayer C; Johansson K; Ramaswamy S; Schürmann P; Eklund H Q Rev Biophys; 2000 Feb; 33(1):67-108. PubMed ID: 11075389 [No Abstract] [Full Text] [Related]
20. Kinetic evidence for protein complexes between thioredoxin and NADP-malate dehydrogenase and presence of a thioredoxin binding site at the N-terminus of the enzyme. Braun H; Lichter A; Häberlein I Eur J Biochem; 1996 Sep; 240(3):781-8. PubMed ID: 8856084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]