These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 13211977)

  • 21. The formation of 4-hydroxyphenylpyruvic acid and phenylpyruvic acid by tryptophan auxotrophs and wild-type Aerobacter aerogenes considered in relation to the general aromatic pathway.
    DOY CH; GIBSON F
    Biochim Biophys Acta; 1961 Jul; 50():495-505. PubMed ID: 13724173
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on the mechanism of acetate oxidation by bacteria. VI. Comparative patterns of acetate oxidation by citrate-grown and acetate-grown Aerobacter aerogenes.
    AJL SJ
    J Gen Physiol; 1951 Sep; 35(1):119-27. PubMed ID: 14873924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenolic compounds accumulated by washed cell suspensions of a tryptophan auxotroph of Aerobacter aerogenes.
    PITTARD AJ; GIBSON F; DOY CH
    Biochim Biophys Acta; 1961 May; 49():485-94. PubMed ID: 13736115
    [No Abstract]   [Full Text] [Related]  

  • 24. The anaerobic dissimilation of sedoheptulose-2-C14 and sedoheptulose-3-C14 by Aerobacter aerogenes.
    NEISH AC; BLACKWOOD AC
    Can J Biochem Physiol; 1955 May; 33(3):323-31. PubMed ID: 14364321
    [No Abstract]   [Full Text] [Related]  

  • 25. beta-Hydroxypropionaldehyde, an intermediate in the formation of 1,3-propanediol by Aerobacter aerogenes.
    ABELES RH; BROWNSTEIN AM; RANDLES CH
    Biochim Biophys Acta; 1960 Jul; 41():530-1. PubMed ID: 13791444
    [No Abstract]   [Full Text] [Related]  

  • 26. The metabolic control of histidine assimilation and dissimilation in Aerobacter aerogenes.
    MAGASANIK B
    J Biol Chem; 1955 Apr; 213(2):557-69. PubMed ID: 14367317
    [No Abstract]   [Full Text] [Related]  

  • 27. The pathway of inositol dissimilation in Aerobacter aerogenes.
    MAGASANIK B
    J Biol Chem; 1953 Dec; 205(2):1019-26. PubMed ID: 13130520
    [No Abstract]   [Full Text] [Related]  

  • 28. The anaerobic dissimilation of D-ribose-1-C14, D-xylose-1-C14, D-xylose-2-C14, and D-xylose-5-C14 by Aerobacter aerogenes.
    ALTERMATT HA; SIMPSON FJ; NEISH AC
    Can J Biochem Physiol; 1955 Jul; 33(4):615-21. PubMed ID: 13240533
    [No Abstract]   [Full Text] [Related]  

  • 29. INTERRELATIONS BETWEEN TWO PATHWAYS OF METHIONINE BIOSYNTHESIS IN AEROBACTER AEROGENES.
    MORNINGSTAR JF; KISLIUK RL
    J Gen Microbiol; 1965 Apr; 39():43-51. PubMed ID: 14330757
    [No Abstract]   [Full Text] [Related]  

  • 30. Pathways of glycerol dissimilation in two strains of Aerobacter aerogenes; enzymatic and tracer studies.
    RUSH D; KARIBIAN D; KARNOVSKY ML; MAGASANIK B
    J Biol Chem; 1957 Jun; 226(2):891-9. PubMed ID: 13438878
    [No Abstract]   [Full Text] [Related]  

  • 31. Metabolic pathways of glycerol dissimilation; a comparative study of two strains of Aerobacter aerogenes.
    MAGASANIK B; BROOKE MS; KARIBIAN D
    J Bacteriol; 1953 Nov; 66(5):611-9. PubMed ID: 13108864
    [No Abstract]   [Full Text] [Related]  

  • 32. Aromatic biosynthesis. IV. Preferential conversion, in incompletely blocked mutants, of a common precursor of several metabolites.
    DAVIS BD
    J Bacteriol; 1952 Nov; 64(5):729-48. PubMed ID: 12999704
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of phencyclidine on the radiosensitivity of mice.
    WILKINS JH; BARNES JH
    Nature; 1962 Sep; 195():1173-5. PubMed ID: 14007035
    [No Abstract]   [Full Text] [Related]  

  • 34. The progressive reaction of isonicotinyl hydrazide with two bacterial amino acid decarboxylases.
    HOARE DS
    Biochim Biophys Acta; 1956 Jan; 19(1):141-3. PubMed ID: 13304080
    [No Abstract]   [Full Text] [Related]  

  • 35. A possible relationship between the formation of o-dihydric phenols and tryptophan biosynthesis by Aerobacter aerogens.
    PITTARD AJ; GIBSON F; DOY CH
    Biochim Biophys Acta; 1962 Feb; 57():290-8. PubMed ID: 14486988
    [No Abstract]   [Full Text] [Related]  

  • 36. Studies on the mechanism of acetate oxidation by bacteria. IV. Acetate oxidation by citrate-grown Aerobacter aerogenes studied with radioactive carbon.
    AJL SJ; WONG DT
    J Bacteriol; 1951 Apr; 61(4):379-87. PubMed ID: 14832175
    [No Abstract]   [Full Text] [Related]  

  • 37. The phosphatase activity of Bacterium lactis aerogenes.
    MCCARTHY BJ; HINSHEL WOOD C
    Proc R Soc Lond B Biol Sci; 1959 Sep; 150():474-85. PubMed ID: 13853884
    [No Abstract]   [Full Text] [Related]  

  • 38. Dissimilation of citric acid by bacterial extracts.
    DAGLEY S; DAWES EA
    Nature; 1953 Aug; 172(4372):345-6. PubMed ID: 13087223
    [No Abstract]   [Full Text] [Related]  

  • 39. A reappraisal of the role of the tricarboxylic acid cycle in the respiration of Escherichia coli.
    AJL SJ; WONG DT
    Arch Biochem Biophys; 1955 Feb; 54(2):474-85. PubMed ID: 14350796
    [No Abstract]   [Full Text] [Related]  

  • 40. Effect of carbohydrates on aspartic acid deaminase activity of bacteria.
    BOYD WL; LICHSTEIN HC
    Proc Soc Exp Biol Med; 1953 Jan; 82(1):45-7. PubMed ID: 13037797
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.