These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 1321338)
1. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of heat shock factor activity prevents heat shock potentiation of glucocorticoid receptor-mediated gene expression. Li DP; Li Calzi S; Sánchez ER Cell Stress Chaperones; 1999 Dec; 4(4):223-34. PubMed ID: 10590836 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of quercetin-induced suppression and delay of heat shock gene expression and thermotolerance development in HT-29 cells. Lee YJ; Erdos G; Hou ZZ; Kim SH; Kim JH; Cho JM; Corry PM Mol Cell Biochem; 1994 Aug; 137(2):141-54. PubMed ID: 7845388 [TBL] [Abstract][Full Text] [Related]
4. Examination of the DNA sequence-specific binding properties of heat shock transcription factor in Xenopus laevis embryos. Karn H; Ovsenek N; Heikkila JJ Biochem Cell Biol; 1992; 70(10-11):1006-13. PubMed ID: 1297327 [TBL] [Abstract][Full Text] [Related]
5. Modulation of HSP68 gene expression after heat shock in thermosensitized and thermotolerant cells is not solely regulated by binding of HSF to HSE. Ovelgönne H; Van Wijk R Int J Hyperthermia; 1995; 11(5):719-32. PubMed ID: 7594822 [TBL] [Abstract][Full Text] [Related]
6. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264 [TBL] [Abstract][Full Text] [Related]
7. The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mosser DD; Duchaine J; Massie B Mol Cell Biol; 1993 Sep; 13(9):5427-38. PubMed ID: 8355691 [TBL] [Abstract][Full Text] [Related]
8. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Kroeger PE; Sarge KD; Morimoto RI Mol Cell Biol; 1993 Jun; 13(6):3370-83. PubMed ID: 8497256 [TBL] [Abstract][Full Text] [Related]
9. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression. Mivechi NF; Shi XY; Hahn GM J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320 [TBL] [Abstract][Full Text] [Related]
10. Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Locke M; Noble EG; Tanguay RM; Feild MR; Ianuzzo SE; Ianuzzo CD Am J Physiol; 1995 Jun; 268(6 Pt 1):C1387-94. PubMed ID: 7611357 [TBL] [Abstract][Full Text] [Related]
11. DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Hensold JO; Hunt CR; Calderwood SK; Housman DE; Kingston RE Mol Cell Biol; 1990 Apr; 10(4):1600-8. PubMed ID: 2320006 [TBL] [Abstract][Full Text] [Related]
12. Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells. Roccisana JL; Kawanabe N; Kajiya H; Koide M; Roodman GD; Reddy SV J Biol Chem; 2004 Mar; 279(11):10500-7. PubMed ID: 14699143 [TBL] [Abstract][Full Text] [Related]
13. Dual control of heat shock response: involvement of a constitutive heat shock element-binding factor. Liu RY; Kim D; Yang SH; Li GC Proc Natl Acad Sci U S A; 1993 Apr; 90(7):3078-82. PubMed ID: 8464927 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Hashikawa N; Sakurai H Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761 [TBL] [Abstract][Full Text] [Related]
15. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587 [TBL] [Abstract][Full Text] [Related]
16. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Hansen RK; Oesterreich S; Lemieux P; Sarge KD; Fuqua SA Biochem Biophys Res Commun; 1997 Oct; 239(3):851-6. PubMed ID: 9367858 [TBL] [Abstract][Full Text] [Related]
17. Thiol reducing reagents inhibit the heat shock response. Involvement of a redox mechanism in the heat shock signal transduction pathway. Huang LE; Zhang H; Bae SW; Liu AY J Biol Chem; 1994 Dec; 269(48):30718-25. PubMed ID: 7982993 [TBL] [Abstract][Full Text] [Related]
18. Interaction of the Neurospora crassa heat shock factor with the heat shock element during heat shock and different developmental stages. Meyer U; Monnerjahn C; Techel D; Rensing L FEMS Microbiol Lett; 2000 Apr; 185(2):255-61. PubMed ID: 10754257 [TBL] [Abstract][Full Text] [Related]
19. Detection of heat shock element-binding activities by gel shift assay during mouse preimplantation development. Mezger V; Renard JP; Christians E; Morange M Dev Biol; 1994 Oct; 165(2):627-38. PubMed ID: 7958427 [TBL] [Abstract][Full Text] [Related]
20. Quercetin suppresses heat shock response by down regulation of HSF1. Nagai N; Nakai A; Nagata K Biochem Biophys Res Commun; 1995 Mar; 208(3):1099-105. PubMed ID: 7702609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]