BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1321587)

  • 21. Hydroxyl radical induced degradation of ibuprofen.
    Illés E; Takács E; Dombi A; Gajda-Schrantz K; Rácz G; Gonter K; Wojnárovits L
    Sci Total Environ; 2013 Mar; 447():286-92. PubMed ID: 23410856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Arch Biochem Biophys; 1990 Jan; 276(1):242-7. PubMed ID: 2153363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Colorimetric Detection of the Hydroxyl Radical.
    Ran Y; Moursy M; Hider RC; Cilibrizzi A
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unusual substituent effects in the hydroxylation of phenols by a Cu(2+)-ascorbic acid-O2 system, gamma-radiolysis, and microsomes.
    Urano Y; Higuchi T; Hirobe M
    Biochem Biophys Res Commun; 1993 Apr; 192(2):568-74. PubMed ID: 8387283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA.
    Gutteridge JM
    Biochem J; 1987 May; 243(3):709-14. PubMed ID: 3117032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW; Eibschutz OM; Strekas T; Cederbaum AI
    Biochem J; 1986 Apr; 235(2):521-9. PubMed ID: 3741403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model studies of the iron-catalysed Haber-Weiss cycle and the ascorbate-driven Fenton reaction.
    Burkitt MJ; Gilbert BC
    Free Radic Res Commun; 1990; 10(4-5):265-80. PubMed ID: 1963164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyl radical production and DNA damage induced by anthracycline-iron complex.
    Muindi JR; Sinha BK; Gianni L; Myers CE
    FEBS Lett; 1984 Jul; 172(2):226-30. PubMed ID: 6086388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative damage to fibronectin. II. The effect of H2O2 and the hydroxyl radical.
    Vissers MC; Winterbourn CC
    Arch Biochem Biophys; 1991 Mar; 285(2):357-64. PubMed ID: 1654773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitrosodimethylamine: evidence for an oxidative pathway not involving hydroxyl radical.
    Wink DA; Nims RW; Desrosiers MF; Ford PC; Keefer LK
    Chem Res Toxicol; 1991; 4(5):510-2. PubMed ID: 1665352
    [No Abstract]   [Full Text] [Related]  

  • 33. Gamma and pulse radiolysis study of pentoxifylline, a methylxanthine.
    Pasquier C; Franzini E; Abedinzadeh Z; Kaouadji MN; Hakim J
    Int J Radiat Biol; 1991 Sep; 60(3):433-47. PubMed ID: 1679084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in the reactivity of phthalic hydrazide and luminol with hydroxyl radicals.
    Schiller J; Arnhold J; Schwinn J; Sprinz H; Brede O; Arnold K
    Free Radic Res; 1999 Jan; 30(1):45-57. PubMed ID: 10193573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin.
    Kocha T; Yamaguchi M; Ohtaki H; Fukuda T; Aoyagi T
    Biochim Biophys Acta; 1997 Feb; 1337(2):319-26. PubMed ID: 9048910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role.
    Gutteridge JM
    FEBS Lett; 1985 Jun; 185(1):19-23. PubMed ID: 2987038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myeloperoxidase as an effective inhibitor of hydroxyl radical production. Implications for the oxidative reactions of neutrophils.
    Winterbourn CC
    J Clin Invest; 1986 Aug; 78(2):545-50. PubMed ID: 3016031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents.
    Kasai H; Nishimura S
    Nucleic Acids Res; 1984 Feb; 12(4):2137-45. PubMed ID: 6701097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.