BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1321690)

  • 1. Intracellular cyclic AMP produces effects opposite to those of cyclic GMP and calcium on shape and motility of neuroblastoma cells.
    Bolsover SR; Gilbert SH; Spector I
    Cell Motil Cytoskeleton; 1992; 22(2):99-116. PubMed ID: 1321690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of actin filaments and three second-messenger systems in short-term regulation of chick dorsal root ganglion neurite outgrowth.
    Lankford KL; Letourneau PC
    Cell Motil Cytoskeleton; 1991; 20(1):7-29. PubMed ID: 1661642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nerve growth factor and cyclic AMP: opposite effects on neuroblastoma-substrate adhesion.
    Schulze I; Perez-Polo JR
    J Neurosci Res; 1982; 8(2-3):393-411. PubMed ID: 6296416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular lithium and cyclic AMP levels are mutually regulated in neuronal cells.
    Montezinho LP; B Duarte C; Fonseca CP; Glinka Y; Layden B; Mota de Freitas D; Geraldes CF; Castro MM
    J Neurochem; 2004 Aug; 90(4):920-30. PubMed ID: 15287898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cAMP promotes branching of laminin-induced neuronal processes.
    Weeks BS; Papadopoulos V; Dym M; Kleinman HK
    J Cell Physiol; 1991 Apr; 147(1):62-7. PubMed ID: 1645363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-dependent effects of maitotoxin on phosphoinositide breakdown and on cyclic AMP accumulation in PC12 and NCB-20 cells.
    Gusovsky F; Yasumoto T; Daly JW
    Mol Pharmacol; 1989 Jul; 36(1):44-53. PubMed ID: 2546052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture.
    Mattson MP; Guthrie PB; Kater SB
    J Neurosci Res; 1988; 21(2-4):447-64. PubMed ID: 2905749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide donors enhance neurotrophin-induced neurite outgrowth through a cGMP-dependent mechanism.
    Hindley S; Juurlink BH; Gysbers JW; Middlemiss PJ; Herman MA; Rathbone MP
    J Neurosci Res; 1997 Feb; 47(4):427-39. PubMed ID: 9057136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells.
    Hartzell HC; Fischmeister R
    Nature; 1986 Sep 18-24; 323(6085):273-5. PubMed ID: 2429189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning.
    Nishiyama M; Hoshino A; Tsai L; Henley JR; Goshima Y; Tessier-Lavigne M; Poo MM; Hong K
    Nature; 2003 Jun; 423(6943):990-5. PubMed ID: 12827203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin regulation of neurite outgrowth in identified neurons from mature and embryonic Helisoma trivolvis.
    Goldberg JI
    Perspect Dev Neurobiol; 1998; 5(4):373-87. PubMed ID: 10533526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cyclic AMP on neuritic outgrowth in explant cultures of developing chick olfactory epithelium.
    Johnson RR; Farbman AI; Gonzales F
    J Neurobiol; 1988 Dec; 19(8):681-93. PubMed ID: 2466949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Second messengers in the regulation of nerve cell plasticity during learning].
    Pivovarov AS; Drozdova EI; Kotliar BI
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1989; (3):75-101. PubMed ID: 2545285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic GMP and cyclic AMP induced changes in control and hypertrophic cardiac myocyte function interact through cyclic GMP affected cyclic-AMP phosphodiesterases.
    Weiss HR; Gong GX; Straznicka M; Yan L; Tse J; Scholz PM
    Can J Physiol Pharmacol; 1999 Jun; 77(6):422-31. PubMed ID: 10537228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cAMP metabolism in mouse parotid gland by cGMP and calcium.
    Watson EL; Singh JC; McPhee C; Beavo J; Jacobson KL
    Mol Pharmacol; 1990 Oct; 38(4):547-53. PubMed ID: 1700270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of intracellular cyclic adenosine monophosphate levels and the differentiation response of human neuroblastoma cells.
    Lando M; Abemayor E; Verity MA; Sidell N
    Cancer Res; 1990 Feb; 50(3):722-7. PubMed ID: 2153444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression.
    Ledbetter JA; Parsons M; Martin PJ; Hansen JA; Rabinovitch PS; June CH
    J Immunol; 1986 Nov; 137(10):3299-305. PubMed ID: 3021852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of stimulators and inhibitors of cyclic nucleotides on lower esophageal sphincter.
    Rattan S; Moummi C
    J Pharmacol Exp Ther; 1989 Feb; 248(2):703-9. PubMed ID: 2537411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transduction pathways mediated by second messengers including cAMP in the sugar receptor cell of the blow fly: study by the whole cell clamp method.
    Kan H; Kataoka-Shirasugi N; Amakawa T
    J Insect Physiol; 2008 Jun; 54(6):1028-34. PubMed ID: 18501923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP inhibits inositol polyphosphate production and calcium mobilization in neuroblastoma X glioma NG108-15 cells.
    Campbell MD; Subramaniam S; Kotlikoff MI; Williamson JR; Fluharty SJ
    Mol Pharmacol; 1990 Aug; 38(2):282-8. PubMed ID: 2166907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.