These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1321748)

  • 1. Vasoconstrictor agonists activate G-protein dependent receptor operated calcium channels (ROCs) in pig aortic microsomes.
    Blayney LM; Gapper PW; Newby AC
    Biochem Soc Trans; 1992 Feb; 20(1):16S. PubMed ID: 1321748
    [No Abstract]   [Full Text] [Related]  

  • 2. Vasoconstrictor agonists activate G-protein-dependent receptor-operated calcium channels in pig aortic microsomes.
    Blayney LM; Gapper PW; Newby AC
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):81-4. PubMed ID: 1347211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of a receptor-operated calcium channel in pig aortic microsomes by cyclic GMP-dependent protein kinase.
    Blayney LM; Gapper PW; Newby AC
    Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):803-6. PubMed ID: 1705117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium permeability of pig aortic microsomes is increased by histamine and a guanyl nucleotide.
    Blayney LM; Newby AC
    Br J Pharmacol; 1989 Dec; 98 Suppl():791P. PubMed ID: 2532941
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition by cyclic GMP-dependent protein kinase of a histamine- and guanyl nucleotide-induced calcium permeability in pig aortic microsomes.
    Blayney LM; Gapper PW; Newby AC
    Biochem Soc Trans; 1990 Jun; 18(3):479-80. PubMed ID: 1695582
    [No Abstract]   [Full Text] [Related]  

  • 6. Histamine and a guanine nucleotide increase calcium permeability in pig aortic microsomal fractions.
    Blayney LM; Newby AC
    Biochem J; 1990 Apr; 267(1):105-9. PubMed ID: 2139327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium release induced by interaction of angiotensin with its receptors in smooth muscle cell microsomes.
    Baudouin M; Meyer P; Fermandjian S; Morgat JL
    Nature; 1972 Feb; 235(5337):336-8. PubMed ID: 4334508
    [No Abstract]   [Full Text] [Related]  

  • 8. Localization of calcium pump activity in smooth muscle.
    Hurwitz L; Fitzpatrick DF; Debbas G; Landon EJ
    Science; 1973 Jan; 179(4071):384-6. PubMed ID: 4405060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of transforming growth factor-beta in regulation of calcium transients in diabetic vascular smooth muscle cells.
    Sharma K; Deelman L; Madesh M; Kurz B; Ciccone E; Siva S; Hu T; Zhu Y; Wang L; Henning R; Ma X; Hajnoczky G
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1258-70. PubMed ID: 12876066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calcium pump in vascular smooth muscle.
    Fitzpatrick DF; Landon EJ; Debbas G; Hurwitz L
    Science; 1972 Apr; 176(4032):305-6. PubMed ID: 5019786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of soman on calcium uptake in microsomes and mitochondria from rabbit aorta.
    Hu CY; Hsu CH; Robinson CP
    J Appl Toxicol; 1991 Aug; 11(4):293-6. PubMed ID: 1940004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of adenosine-triphosphate-sensitive potassium channels in the mechanical responses of agonist-stimulated isolated porcine coronary arteries.
    Nguyen DH
    Arzneimittelforschung; 1997 Dec; 47(12):1351-8. PubMed ID: 9450163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. II. Studies with guanosine 5'-(gamma)triphosphate.
    Zeng YY; Benishin CG; Pang PK
    J Pharmacol Exp Ther; 1989 Jul; 250(1):352-7. PubMed ID: 2473191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active extrusion of calcium ions by smooth muscle microsomes.
    Uchida M
    Biochem Biophys Res Commun; 1976 Nov; 73(1):127-32. PubMed ID: 999694
    [No Abstract]   [Full Text] [Related]  

  • 15. Energy-dependent calcium uptake activity of microsomes from the aorta of normal and hypertensive rats.
    Moore L; Hurwitz L; Davenport GR; Landon EJ
    Biochim Biophys Acta; 1975 Dec; 413(3):432-43. PubMed ID: 1191698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Ca2+ current in frog ventricular cardiomyocytes by guanosine 5'-triphosphate analogues and isoproterenol.
    Parsons TD; Hartzell HC
    J Gen Physiol; 1993 Sep; 102(3):525-49. PubMed ID: 8245822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsomal calcium-accumulating ability of bovine coronary artery and aorta.
    Takeo S; Sakanashi M
    Biochem Pharmacol; 1985 Jul; 34(14):2417-24. PubMed ID: 2990486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium uptake and calcium release by subcellular fractions of smooth muscle. II. Kinetics of calcium uptake by microsomes and mitochondria from pig coronary artery and guinea pig ileum.
    Zelck U; Karnstedt U; Albrecht E
    Acta Biol Med Ger; 1975; 34(6):981-6. PubMed ID: 1199631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of calcium mobilization in aortic rings of pregnant rats: Contribution of extracellular calcium and of voltage-operated calcium channels.
    Roy B; Sicotte B; Brochu M; St-Louis J
    Biol Reprod; 1999 Apr; 60(4):979-88. PubMed ID: 10084975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of high affinity phenylalkylamine binding sites on cultured human embryonal vascular smooth muscle cells.
    DrĂ­mal J
    Gen Physiol Biophys; 1992 Dec; 11(6):555-65. PubMed ID: 1338048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.