These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 1321768)

  • 1. The role of VPI in regulation of seed maturation in maize.
    McCarty DR
    Biochem Soc Trans; 1992 Feb; 20(1):89-92. PubMed ID: 1321768
    [No Abstract]   [Full Text] [Related]  

  • 2. The Maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development.
    Suzuki M; Latshaw S; Sato Y; Settles AM; Koch KE; Hannah LC; Kojima M; Sakakibara H; McCarty DR
    Plant Physiol; 2008 Mar; 146(3):1193-206. PubMed ID: 18203869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A LEA 4 protein up-regulated by ABA is involved in drought response in maize roots.
    Zamora-Briseño JA; de Jiménez ES
    Mol Biol Rep; 2016 Apr; 43(4):221-8. PubMed ID: 26922182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize (Zea mays) seeds can detect above-ground weeds; thiamethoxam alters the view.
    Afifi M; Lee E; Lukens L; Swanton C
    Pest Manag Sci; 2015 Sep; 71(9):1335-45. PubMed ID: 25367862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene.
    Shi J; Wang H; Wu Y; Hazebroek J; Meeley RB; Ertl DS
    Plant Physiol; 2003 Feb; 131(2):507-15. PubMed ID: 12586875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos.
    White CN; Rivin CJ
    Plant Physiol; 2000 Apr; 122(4):1089-97. PubMed ID: 10759504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.
    Li Y; Wang C; Liu X; Song J; Li H; Sui Z; Zhang M; Fang S; Chu J; Xin M; Xie C; Zhang Y; Sun Q; Ni Z
    J Exp Bot; 2016 Apr; 67(9):2889-900. PubMed ID: 27034328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of RING Domain E3 Ligase ZmXerico1 Confers Drought Tolerance through Regulation of ABA Homeostasis.
    Brugière N; Zhang W; Xu Q; Scolaro EJ; Lu C; Kahsay RY; Kise R; Trecker L; Williams RW; Hakimi S; Niu X; Lafitte R; Habben JE
    Plant Physiol; 2017 Nov; 175(3):1350-1369. PubMed ID: 28899960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic control of abscisic acid biosynthesis in maize.
    Tan BC; Schwartz SH; Zeevaart JA; McCarty DR
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):12235-40. PubMed ID: 9342392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed productivity and imprinting expression in apomictic maize-Tripsacum hybrids.
    Kravtchenko AY; Nakagawa H; Abdyrakhmanova EA; Sokolov VA
    Dokl Biol Sci; 2014 Sep; 458():294-6. PubMed ID: 25371256
    [No Abstract]   [Full Text] [Related]  

  • 11. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L.
    Moore R; Smith JD
    Planta; 1985; 164():126-8. PubMed ID: 11540855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor.
    Zhang D; Wu S; An X; Xie K; Dong Z; Zhou Y; Xu L; Fang W; Liu S; Liu S; Zhu T; Li J; Rao L; Zhao J; Wan X
    Plant Biotechnol J; 2018 Feb; 16(2):459-471. PubMed ID: 28678349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vivipary as a tool to analyze late embryogenic events in maize.
    Durantini D; Giulini A; Malgioglio A; Pilu R; Tuberosa R; Sanguineti C; Gavazzi G
    Heredity (Edinb); 2008 Nov; 101(5):465-70. PubMed ID: 18941469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings.
    Yang D; Wang N; Yan X; Shi J; Zhang M; Wang Z; Yuan H
    Colloids Surf B Biointerfaces; 2014 Feb; 114():241-6. PubMed ID: 24200952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize.
    Hattori T; Vasil V; Rosenkrans L; Hannah LC; McCarty DR; Vasil IK
    Genes Dev; 1992 Apr; 6(4):609-18. PubMed ID: 1532784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Casein Kinase 2 Negatively Regulates Abscisic Acid-Activated SnRK2s in the Core Abscisic Acid-Signaling Module.
    Vilela B; Nájar E; Lumbreras V; Leung J; Pagès M
    Mol Plant; 2015 May; 8(5):709-21. PubMed ID: 25744360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize.
    Cao X; Costa LM; Biderre-Petit C; Kbhaya B; Dey N; Perez P; McCarty DR; Gutierrez-Marcos JF; Becraft PW
    Plant Physiol; 2007 Feb; 143(2):720-31. PubMed ID: 17208960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of maize by electroporation of embryos.
    Rhodes CA; Marrs KA; Murry LE
    Methods Mol Biol; 1995; 55():121-31. PubMed ID: 8528414
    [No Abstract]   [Full Text] [Related]  

  • 19. Cloning and characterization of a cDNA encoding a maize seedling phytase.
    Maugenest S; Martinez I; Lescure AM
    Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):511-7. PubMed ID: 9065771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of apical dominance in maize.
    Doebley J; Stec A; Hubbard L
    Nature; 1997 Apr; 386(6624):485-8. PubMed ID: 9087405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.