BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1321825)

  • 1. Tissue- and development-specific expression of the human phenylalanine hydroxylase/chloramphenicol acetyltransferase fusion gene in transgenic mice.
    Wang Y; DeMayo JL; Hahn TM; Finegold MJ; Konecki DS; Lichter-Konecki U; Woo SL
    J Biol Chem; 1992 Jul; 267(21):15105-10. PubMed ID: 1321825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved as well as divergent regulatory elements account for expression of the human and rodent phenylalanine hydroxylase genes.
    Bristeau A; Catherin A; Weiss MC; Faust DM
    Gene; 2001 Aug; 274(1-2):283-91. PubMed ID: 11675021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of chimeric human transferrin-chloramphenicol acetyltransferase genes in liver and brain of transgenic mice during development.
    Lu Y; Cox LA; Herbert DC; Weaker FJ; Walter CA; Adrian GS
    Dev Biol; 1993 Feb; 155(2):452-8. PubMed ID: 8432399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The V388M mutation results in a kinetic variant form of phenylalanine hydroxylase.
    Leandro P; Rivera I; Lechner MC; de Almeida IT; Konecki D
    Mol Genet Metab; 2000 Mar; 69(3):204-12. PubMed ID: 10767175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues.
    Lichter-Konecki U; Hipke CM; Konecki DS
    Mol Genet Metab; 1999 Aug; 67(4):308-16. PubMed ID: 10444341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormonal and nutritional control of the fatty acid synthase promoter in transgenic mice.
    Soncini M; Yet SF; Moon Y; Chun JY; Sul HS
    J Biol Chem; 1995 Dec; 270(51):30339-43. PubMed ID: 8530458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two 5'-regions are required for nutritional and insulin regulation of the fatty-acid synthase promoter in transgenic mice.
    Moon YS; Latasa MJ; Kim KH; Wang D; Sul HS
    J Biol Chem; 2000 Apr; 275(14):10121-7. PubMed ID: 10744693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of a unique liver gene promoter.
    Wang Y; Hahn TM; Tsai SY; Woo SL
    J Biol Chem; 1994 Mar; 269(12):9137-46. PubMed ID: 8132651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of human tyrosine hydroxylase-chloramphenicol acetyltransferase (CAT) fusion gene in the brains of transgenic mice as examined by CAT immunocytochemistry.
    Nagatsu I; Karasawa N; Yamada K; Sakai M; Fujii T; Takeuchi T; Arai R; Kobayashi K; Nagatsu T
    J Neural Transm Gen Sect; 1994; 96(2):85-104. PubMed ID: 7857598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of phenylalanine hydroxylase (PAH) in erythrogenic bone marrow does not correct hyperphenylalaninemia in Pah(enu2) mice.
    Harding CO; Neff M; Jones K; Wild K; Wolff JA
    J Gene Med; 2003 Nov; 5(11):984-93. PubMed ID: 14601136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 5'-flanking region of the rat synapsin I gene directs neuron-specific and developmentally regulated reporter gene expression in transgenic mice.
    Hoesche C; Sauerwald A; Veh RW; Krippl B; Kilimann MW
    J Biol Chem; 1993 Dec; 268(35):26494-502. PubMed ID: 8253778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific expression of the human pyruvate dehydrogenase alpha (Pdha-1)/chloramphenicol acetyltransferase fusion gene in transgenic mice.
    Dey R; Naik S; Patel MS
    Biochim Biophys Acta; 1996 Mar; 1305(3):189-95. PubMed ID: 8597605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic expression of chloramphenicol acetyltransferase (CAT) in the cerebellum in mice transgenic for a carbonic anhydrase II promoter-CAT construct that is without apparent phenotypic effect.
    Erickson RP; Bevilacqua A; Venta PJ; Karolyi J; Tashian RE
    Mol Reprod Dev; 1990 Oct; 27(2):102-9. PubMed ID: 2123391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the human tyrosine hydroxylase promoter-chloramphenicol acetyltransferase chimeric gene expression in transgenic mice.
    Sasaoka T; Kobayashi K; Nagatsu I; Takahashi R; Kimura M; Yokoyama M; Nomura T; Katsuki M; Nagatsu T
    Brain Res Mol Brain Res; 1992 Dec; 16(3-4):274-86. PubMed ID: 1363328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: implications for tetrahydrobiopterin-responsive hyperphenylalaninemia.
    Thöny B; Ding Z; Martínez A
    FEBS Lett; 2004 Nov; 577(3):507-11. PubMed ID: 15556637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of transgenic mice with the expression of phenylalanine hydroxylase and GTP cyclohydrolase I in the skin.
    Christensen R; Alhonen L; Wahlfors J; Jakobsen M; Jensen TG
    Exp Dermatol; 2005 Jul; 14(7):535-42. PubMed ID: 15946242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-specific expression of rat pyruvate kinase L/chloramphenicol acetyltransferase fusion gene in transgenic mice and its regulation by diet and insulin.
    Yamada K; Noguchi T; Miyazaki J; Matsuda T; Takenaka M; Yamamura K; Tanaka T
    Biochem Biophys Res Commun; 1990 Aug; 171(1):243-9. PubMed ID: 2203346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.
    Greenberg NM; Reding TV; Duffy T; Rosen JM
    Mol Endocrinol; 1991 Oct; 5(10):1504-12. PubMed ID: 1775134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gonadotrope- and thyrotrope-specific expression of the human and bovine glycoprotein hormone alpha-subunit genes is regulated by distinct cis-acting elements.
    Hamernik DL; Keri RA; Clay CM; Clay JN; Sherman GB; Sawyer HR; Nett TM; Nilson JH
    Mol Endocrinol; 1992 Oct; 6(10):1745-55. PubMed ID: 1280329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme.
    Martinez A; Knappskog PM; Olafsdottir S; Døskeland AP; Eiken HG; Svebak RM; Bozzini M; Apold J; Flatmark T
    Biochem J; 1995 Mar; 306 ( Pt 2)(Pt 2):589-97. PubMed ID: 7887915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.