These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 1322028)
1. Non-eicosanoid functions of essential fatty acids: regulation of adenosine-related functions in cultured neuroblastoma cells. Murphy MG; Byczko Z Adv Exp Med Biol; 1992; 318():91-102. PubMed ID: 1322028 [TBL] [Abstract][Full Text] [Related]
2. Further studies of the mechanism(s) of polyunsaturated-fatty-acid-mediated increases in intracellular cAMP formation in N1E-115 neuroblastoma cells. Murphy MG; Byczko Z Neurochem Res; 1992 Nov; 17(11):1069-77. PubMed ID: 1334237 [TBL] [Abstract][Full Text] [Related]
3. Effects of adenosine analogues on basal, prostaglandin E1- and forskolin-stimulated cyclic AMP formation in intact neuroblastoma cells. Murphy MG; Byczko Z Biochem Pharmacol; 1989 Oct; 38(19):3289-95. PubMed ID: 2554919 [TBL] [Abstract][Full Text] [Related]
4. Effects of membrane polyunsaturated fatty acids on adenosine receptor function in intact N1E-115 neuroblastoma cells. Murphy MG; Byczko Z Biochem Cell Biol; 1990 Jan; 68(1):392-5. PubMed ID: 2161675 [TBL] [Abstract][Full Text] [Related]
5. Effects of exogenous linoleic acid on fatty acid composition, receptor-mediated cAMP formation, and transport functions in rat astrocytes in primary culture. Murphy MG Neurochem Res; 1995 Nov; 20(11):1365-75. PubMed ID: 8786824 [TBL] [Abstract][Full Text] [Related]
6. Effects of membrane polyunsaturated fatty acids on opiate peptide inhibition of basal and prostaglandin E1-stimulated cyclic AMP formation in intact N1E-115 neuroblastoma cells. Murphy MG; Moak CM; Rao BG Biochem Pharmacol; 1987 Dec; 36(23):4079-84. PubMed ID: 2825714 [TBL] [Abstract][Full Text] [Related]
7. Effects of acute and chronic ethanol on cyclic AMP accumulation in NG108-15 cells: differential dependence of changes on extracellular adenosine. Kelly E; Harrison PK; Williams RJ Br J Pharmacol; 1995 Apr; 114(7):1433-41. PubMed ID: 7541691 [TBL] [Abstract][Full Text] [Related]
8. Changes in adenosine receptors during differentiation of 3T3-F442A cells to adipocytes. Ravid K; Lowenstein JM Biochem J; 1988 Jan; 249(2):377-81. PubMed ID: 2829856 [TBL] [Abstract][Full Text] [Related]
9. Occupancy of adenosine receptors raises cyclic AMP alone and in synergy with occupancy of chemoattractant receptors and inhibits membrane depolarization. Cronstein BN; Kramer SB; Rosenstein ED; Korchak HM; Weissmann G; Hirschhorn R Biochem J; 1988 Jun; 252(3):709-15. PubMed ID: 2844154 [TBL] [Abstract][Full Text] [Related]
10. Adenosine receptors activate adenylate cyclase and enhance secretion from bovine adrenal chromaffin cells in the presence of forskolin. Chern YJ; Kim KT; Slakey LL; Westhead EW J Neurochem; 1988 May; 50(5):1484-93. PubMed ID: 2834514 [TBL] [Abstract][Full Text] [Related]
11. Studies of the regulation of basal adenylate cyclase activity by membrane polyunsaturated fatty acids in cultured neuroblastoma. Murphy MG J Neurochem; 1986 Jul; 47(1):245-53. PubMed ID: 3011993 [TBL] [Abstract][Full Text] [Related]
12. Control of cyclic adenosine 3':5'-monophosphate-elevating effect of adenosine in C-1300 murine neuroblastoma in tissue culture. Green RD J Pharmacol Exp Ther; 1977 Dec; 203(3):610-20. PubMed ID: 200733 [TBL] [Abstract][Full Text] [Related]
13. The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus. Brundege JM; Diao L; Proctor WR; Dunwiddie TV Neuropharmacology; 1997 Sep; 36(9):1201-10. PubMed ID: 9364475 [TBL] [Abstract][Full Text] [Related]
14. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells. Kudlacek O; Just H; Korkhov VM; Vartian N; Klinger M; Pankevych H; Yang Q; Nanoff C; Freissmuth M; Boehm S Neuropsychopharmacology; 2003 Jul; 28(7):1317-27. PubMed ID: 12784121 [TBL] [Abstract][Full Text] [Related]
15. Extracellular ATP stimulates adenylyl cyclase and phospholipase C through distinct purinoceptors in NG108-15 cells. Matsuoka I; Zhou Q; Ishimoto H; Nakanishi H Mol Pharmacol; 1995 Apr; 47(4):855-62. PubMed ID: 7723748 [TBL] [Abstract][Full Text] [Related]
16. The role of cyclic AMP, calcium and filamentous actin in adenosine modulation of Fc receptor-mediated phagocytosis in human neutrophils. Zalavary S; Stendahl O; Bengtsson T Biochim Biophys Acta; 1994 Jun; 1222(2):249-56. PubMed ID: 8031862 [TBL] [Abstract][Full Text] [Related]
17. Modification of the expression of adenosine 3',5'-cyclic monophosphate-induced differentiated functions in neuroblastoma cells by beta-carotene and D-alpha-tocopheryl succinate. Prasad KN; Kentroti S; Edwards-Prasad J; Vernadakis A; Imam M; Carvalho E; Kumar S J Am Coll Nutr; 1994 Jun; 13(3):298-303. PubMed ID: 7915734 [TBL] [Abstract][Full Text] [Related]
18. A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP. Kelley GG; Poeschla EM; Barron HV; Forrest JN J Clin Invest; 1990 May; 85(5):1629-36. PubMed ID: 1970583 [TBL] [Abstract][Full Text] [Related]