BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1322046)

  • 1. Use of 14CO2 in estimating rates of hepatic gluconeogenesis.
    Esenmo E; Chandramouli V; Schumann WC; Kumaran K; Wahren J; Landau BR
    Am J Physiol; 1992 Jul; 263(1 Pt 1):E36-41. PubMed ID: 1322046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux.
    Landau BR; Schumann WC; Chandramouli V; Magnusson I; Kumaran K; Wahren J
    Am J Physiol; 1993 Oct; 265(4 Pt 1):E636-47. PubMed ID: 8238339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients.
    Landau BR; Chandramouli V; Schumann WC; Ekberg K; Kumaran K; Kalhan SC; Wahren J
    Diabetologia; 1995 Jul; 38(7):831-8. PubMed ID: 7556986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [14C]bicarbonate fixation into glucose and other metabolites in the liver of the starved rat under halothane anaesthesia. Metabolic channelling of mitochondrial oxaloacetate.
    Heath DF; Rose JG
    Biochem J; 1985 May; 227(3):851-65. PubMed ID: 3924030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating gluconeogenic rates in NIDDM.
    Landau BR
    Adv Exp Med Biol; 1993; 334():209-20. PubMed ID: 8249684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of the rate of gluconeogenesis from the incorporation of 14C atoms from labelled bicarbonate or acetate.
    Hetenyi G; Lussier B; Ferrarotto C; Radziuk J
    Can J Physiol Pharmacol; 1982 Dec; 60(12):1603-9. PubMed ID: 6819887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis.
    Schumann WC; Magnusson I; Chandramouli V; Kumaran K; Wahren J; Landau BR
    J Biol Chem; 1991 Apr; 266(11):6985-90. PubMed ID: 2016310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of gluconeogenesis in vivo with 14C-labeled substrates.
    Katz J
    Am J Physiol; 1985 Apr; 248(4 Pt 2):R391-9. PubMed ID: 3985180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos.
    Salon C; Raymond P; Pradet A
    J Biol Chem; 1988 Sep; 263(25):12278-87. PubMed ID: 3137224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple model for alanine metabolism in isolated rat hepatocytes.
    Martin G; Vincent N; Combet J; Baverel G
    Biochim Biophys Acta; 1993 Jan; 1175(2):161-73. PubMed ID: 8418895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo.
    Heath DF; Threlfall CJ
    Biochem J; 1968 Nov; 110(2):337-62. PubMed ID: 5726212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model to examine pathways of carbon flux from lactate to glucose at the first branch point in gluconeogenesis.
    Blackard WG; Clore JN
    J Biol Chem; 1988 Nov; 263(32):16725-30. PubMed ID: 3182810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios.
    Kelleher JK; Bryan BM; Mallet RT; Holleran AL; Murphy AN; Fiskum G
    Biochem J; 1987 Sep; 246(3):633-9. PubMed ID: 3120698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose.
    Radziuk J
    Am J Physiol; 1989 Aug; 257(2 Pt 1):E158-69. PubMed ID: 2669512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive tracing of Krebs cycle metabolism in liver.
    Magnusson I; Schumann WC; Bartsch GE; Chandramouli V; Kumaran K; Wahren J; Landau BR
    J Biol Chem; 1991 Apr; 266(11):6975-84. PubMed ID: 2016309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
    Jones JG; Solomon MA; Cole SM; Sherry AD; Malloy CR
    Am J Physiol Endocrinol Metab; 2001 Oct; 281(4):E848-56. PubMed ID: 11551863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man.
    Consoli A; Kennedy F; Miles J; Gerich J
    J Clin Invest; 1987 Nov; 80(5):1303-10. PubMed ID: 3680498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compartmentation of 14CO2 in the perfused rat liver.
    Marsolais C; Huot S; David F; Garneau M; Brunengraber H
    J Biol Chem; 1987 Feb; 262(6):2604-7. PubMed ID: 3102472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incomplete free fatty acid oxidation by ascites tumor cells under low oxygen tension.
    Ookhtens M; Baker N
    Am J Physiol; 1983 Jan; 244(1):R84-92. PubMed ID: 6295191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive tracing of liver intermediary metabolism in normal subjects and in moderately hyperglycaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM.
    Diraison F; Large V; Brunengraber H; Beylot M
    Diabetologia; 1998 Feb; 41(2):212-20. PubMed ID: 9498656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.