BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 1322510)

  • 1. The role of dihydropyridine-sensitive Ca2+ channels in stimulus-evoked catecholamine release from chemoreceptor cells of the carotid body.
    Obeso A; Rocher A; Fidone S; Gonzalez C
    Neuroscience; 1992; 47(2):463-72. PubMed ID: 1322510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of [3H]catecholamine release and Ca2+ currents by prostaglandin E2 in rabbit carotid body chemoreceptor cells.
    Gómez-Niño A; López-López JR; Almaraz L; González C
    J Physiol; 1994 Apr; 476(2):269-77. PubMed ID: 7519263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine inhibits L-type Ca2+ current and catecholamine release in the rabbit carotid body chemoreceptor cells.
    Rocher A; Gonzalez C; Almaraz L
    Eur J Neurosci; 1999 Feb; 11(2):673-81. PubMed ID: 10051768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells.
    Rocher A; Geijo-Barrientos E; Cáceres AI; Rigual R; González C; Almaraz L
    J Physiol; 2005 Jan; 562(Pt 2):407-20. PubMed ID: 15528240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells.
    Rocher A; Obeso A; Gonzalez C; Herreros B
    J Physiol; 1991 Feb; 433():533-48. PubMed ID: 1668755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydropyridine-sensitive calcium channel activity related to prolactin, growth hormone, and luteinizing hormone release from anterior pituitary cells in culture: interactions with somatostatin, dopamine, and estrogens.
    Drouva SV; Rerat E; Bihoreau C; Laplante E; Rasolonjanahary R; Clauser H; Kordon C
    Endocrinology; 1988 Dec; 123(6):2762-73. PubMed ID: 2461851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro activation of cyclo-oxygenase in the rabbit carotid body: effect of its blockade on [3H]catecholamine release.
    Gómez-Niño A; Almaraz L; González C
    J Physiol; 1994 Apr; 476(2):257-67. PubMed ID: 8046642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dihydropyridines and inorganic calcium blockers on aggregation and on intracellular free calcium in platelets.
    Palés J; Palacios-Araus L; López A; Gual A
    Biochim Biophys Acta; 1991 May; 1064(2):169-74. PubMed ID: 1645196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high-voltage-activated Ca2+ channels.
    Overholt JL; Prabhakar NR
    J Neurophysiol; 1997 Nov; 78(5):2467-74. PubMed ID: 9356397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells.
    Ureña J; Fernández-Chacón R; Benot AR; Alvarez de Toledo GA; López-Barneo J
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10208-11. PubMed ID: 7937863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible involvement of both N- and L-type voltage-dependent Ca channels in adrenergic neurotransmission of canine saphenous veins in low Ca2+ plus tetraethylammonium medium.
    Takata Y; Ozawa J; Kato H
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Oct; 346(4):419-24. PubMed ID: 1331815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reevaluation of the mechanisms involved in the secretion of catecholamine evoked by 2,4-dinitrophenol from chemoreceptor cells of the rabbit carotid body.
    Rocher A; Geijo E; Caceres AI; Gonzalez C; Almaraz L
    Adv Exp Med Biol; 2003; 536():85-93. PubMed ID: 14635653
    [No Abstract]   [Full Text] [Related]  

  • 13. Release of substance P by low oxygen in the rabbit carotid body: evidence for the involvement of calcium channels.
    Kim DK; Oh EK; Summers BA; Prabhakar NR; Kumar GK
    Brain Res; 2001 Feb; 892(2):359-69. PubMed ID: 11172784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of calcium current by hypoxia in carotid body glomus cells.
    Summers BA; Overholt JL; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():589-99. PubMed ID: 10849699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen.
    Ganfornina MD; López-Barneo J
    J Gen Physiol; 1992 Sep; 100(3):401-26. PubMed ID: 1331289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+ channels in chick neural retina cells characterized by 1,4-dihydropyridine antagonists and activators.
    Wei XY; Rutledge A; Zhong Q; Ferrante J; Triggle DJ
    Can J Physiol Pharmacol; 1989 May; 67(5):506-14. PubMed ID: 2548693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview on the homeostasis of Ca2+ in chemoreceptor cells of the rabbit and rat carotid bodies.
    Conde SV; Caceres AI; Vicario I; Rocher A; Obeso A; Gonzalez C
    Adv Exp Med Biol; 2006; 580():215-22; discussion 351-9. PubMed ID: 16683722
    [No Abstract]   [Full Text] [Related]  

  • 18. A dihydropyridine-resistant component in the rat adrenal secretory response to splanchnic nerve stimulation.
    López MG; Shukla R; García AG; Wakade AR
    J Neurochem; 1992 Jun; 58(6):2139-44. PubMed ID: 1374118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nicotinic acetylcholine receptor of the bovine chromaffin cell, a new target for dihydropyridines.
    López MG; Fonteríz RI; Gandía L; de la Fuente M; Villarroya M; García-Sancho J; García AG
    Eur J Pharmacol; 1993 Oct; 247(2):199-207. PubMed ID: 7506660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pertussis toxin stimulation of catecholamine release from adrenal medullary chromaffin cells: mechanism may be by direct activation of L-type and G-type calcium channels.
    Ceña V; Brocklehurst KW; Pollard HB; Rojas E
    J Membr Biol; 1991 May; 122(1):23-31. PubMed ID: 1714959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.