These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 13225760)

  • 21. Synthesis of a compound with folic acid activity by Lactobacillus arabinosus 17-5.
    MITBANDER VB; SREENIVASAN A
    Arch Mikrobiol; 1954; 21(1):60-8. PubMed ID: 13229324
    [No Abstract]   [Full Text] [Related]  

  • 22. Mechanisms of Specific Embryonic Effects of Nitrogen Oxide.
    Dolgorukova AM; Titov VY; Petrov VA; Osipov AN; Slesarenko NA; Kochish II
    Bull Exp Biol Med; 2018 Sep; 165(5):635-639. PubMed ID: 30225706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of utilization of glutamic acid by Lactobacillus arabinosus.
    AYENGAR P; ROBERTS E
    Proc Soc Exp Biol Med; 1952 Mar; 79(3):476-81. PubMed ID: 14920466
    [No Abstract]   [Full Text] [Related]  

  • 24. [Variation of catalase activity in a mutant of Streptobacterium plantarum].
    WURTZ B
    C R Seances Soc Biol Fil; 1953 Mar; 147(5-6):478-80. PubMed ID: 13082859
    [No Abstract]   [Full Text] [Related]  

  • 25. [Polyphosphate synthesis during nitrate respiration of Micrococcus denitrificans strain 11].
    KALTWASSER H; VOGT G; SCHLEGEL HG
    Arch Mikrobiol; 1962; 44():259-65. PubMed ID: 13962021
    [No Abstract]   [Full Text] [Related]  

  • 26. Cell permeability: a factor in the biotin-oleate relationship in Lactobacillus arabinosus.
    TRAUB A; LICHSTEIN HC
    Arch Biochem Biophys; 1956 May; 62(1):222-33. PubMed ID: 13314656
    [No Abstract]   [Full Text] [Related]  

  • 27. Nitrate content of some grass species and strains.
    GRIFFITH G
    Nature; 1958 Oct; 182(4642):1099-100. PubMed ID: 13590241
    [No Abstract]   [Full Text] [Related]  

  • 28. NITRATE REDUCTION WITH MOLECULAR HYDROGEN IN A RECONSTITUTED ENZYMATIC SYSTEM.
    DELCAMPO FF; PANEQUE A; RAMIREZ JM; LOSADA M
    Nature; 1965 Jan; 205():387-8. PubMed ID: 14243418
    [No Abstract]   [Full Text] [Related]  

  • 29. [Effect of nitrate and ammonium supply on rubber retention and on the oxidation-reduction process in kok-saghyz].
    MIKHLIN DM; BELIKOV PS; BRONOVITSKAIA ES; PSHENOVA KV
    Dokl Akad Nauk SSSR; 1951 Apr; 77(4):661-4. PubMed ID: 14822847
    [No Abstract]   [Full Text] [Related]  

  • 30. The utilization of nitrate nitrogen by the Azotobacter.
    GREEN M; WILSON PW
    J Gen Microbiol; 1953 Aug; 9(1):89-96. PubMed ID: 13084880
    [No Abstract]   [Full Text] [Related]  

  • 31. [Study of the metabolism of nitrates in Chlorella pyrenoidosa in the dark. II. Assimilation of the nitrogen from K15-potassium nitrate in the presence of glucose].
    THANG MN
    Biochim Biophys Acta; 1961 Sep; 52():495-502. PubMed ID: 13920507
    [No Abstract]   [Full Text] [Related]  

  • 32. Haem utilisation and nitrate reduction by Haemophilus influenzae.
    SMITH W; HALE JH; O'CALLAGHAN CH
    J Pathol Bacteriol; 1953 Jan; 65(1):229-38. PubMed ID: 13035616
    [No Abstract]   [Full Text] [Related]  

  • 33. Flavoprotein-catalyzed pyruvate oxidation in Lactobacillus delbrueckii.
    HAGER LP; GELLER DM; LIPMANN F
    Fed Proc; 1954 Sep; 13(3):734-8. PubMed ID: 13210467
    [No Abstract]   [Full Text] [Related]  

  • 34. Metabolism of nitrate by cattle.
    WANG LC; GARCIA-RIVERA J; BURRIS RH
    Biochem J; 1961 Nov; 81(2):237-42. PubMed ID: 14004854
    [No Abstract]   [Full Text] [Related]  

  • 35. The inhibition of aspartic acid utilization in the synthesis of the adaptive malic enzyme in Lactobacillus arabinosus.
    IFLAND PW; SHIVE W
    J Biol Chem; 1956 Dec; 223(2):949-57. PubMed ID: 13385242
    [No Abstract]   [Full Text] [Related]  

  • 36. [Nitrate reduction and assimilation of glucose by Chlorella pyrenoidosa; Incorporation of glucose 14C in the presence and absence of nitrates].
    Thang MN
    C R Hebd Seances Acad Sci; 1959 Apr; 248(14):2135-7. PubMed ID: 13652444
    [No Abstract]   [Full Text] [Related]  

  • 37. THE INFLUENCE OF NITRATE AND NITRITE REDUCTION ON CATABOLITE REPRESSION IN ESCHERICHIA COLI.
    DOBROGOSZ WJ
    Biochim Biophys Acta; 1965 May; 100():553-66. PubMed ID: 14347951
    [No Abstract]   [Full Text] [Related]  

  • 38. OXIDIZED NICOTINAMIDE-ADENINE DINUCLEOTIDE-INDEPENDENT LACTATE DEHYDROGENASES OF LACTOBACILLUS ARABINOSUS 17.5.
    SNOSWELL AM
    Biochim Biophys Acta; 1963 Sep; 77():7-9. PubMed ID: 14078976
    [No Abstract]   [Full Text] [Related]  

  • 39. Microbial reduction of nitrate in the presence of zero-valent iron.
    Zhang Y; Douglas GB; Kaksonen AH; Cui L; Ye Z
    Sci Total Environ; 2019 Jan; 646():1195-1203. PubMed ID: 30235605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel and simple cell-based electrochemical biosensor for evaluating the antioxidant capacity of Lactobacillus plantarum strains isolated from Chinese dry-cured ham.
    Ge Q; Ge P; Jiang D; Du N; Chen J; Yuan L; Yu H; Xu X; Wu M; Zhang W; Zhou G
    Biosens Bioelectron; 2018 Jan; 99():555-563. PubMed ID: 28825999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.