These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1323271)

  • 1. The chloride channel blocker anthracene 9-carboxylate inhibits fatty acid incorporation into phospholipid in cultured human airway epithelial cells.
    Kang JX; Man SF; Brown NE; Labrecque PA; Clandinin MT
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):725-9. PubMed ID: 1323271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The deltaF508 mutation in the cystic fibrosis transmembrane conductance regulator alters control of essential fatty acid utilization in epithelial cells.
    Bhura-Bandali FN; Suh M; Man SF; Clandinin MT
    J Nutr; 2000 Dec; 130(12):2870-5. PubMed ID: 11110839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid uptake and catecholamine-stimulated phospholipid metabolism in immortalized airway epithelial cells established from primary cultures.
    Fletcher JE; Erwin K; Krueger LJ
    Biochem Int; 1990; 21(4):733-40. PubMed ID: 2241999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of platelet-activating factor binding to human airway epithelial cells: modulation by fatty acids and ion-channel blockers.
    Kang JX; Man SF; Hirsh AJ; Clandinin MT
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):795-802. PubMed ID: 7526847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outward-rectifying chloride channels in cultured adult and fetal human nasal epithelial cells.
    Jorissen M; Vereecke J; Carmeliet E; Van den Berghe H; Cassiman JJ
    J Membr Biol; 1990 Aug; 117(2):123-30. PubMed ID: 2170656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular Cl- transport in cultured cystic fibrosis airway epithelium.
    Willumsen NJ; Davis CW; Boucher RC
    Am J Physiol; 1989 May; 256(5 Pt 1):C1045-53. PubMed ID: 2719094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarized distribution of HCO3- transport in human normal and cystic fibrosis nasal epithelia.
    Paradiso AM; Coakley RD; Boucher RC
    J Physiol; 2003 Apr; 548(Pt 1):203-18. PubMed ID: 12562898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide has no beneficial effects on ion transport defects in cystic fibrosis human nasal epithelium.
    Rückes-Nilges C; Lindemann H; Klimek T; Glanz H; Weber WM
    Pflugers Arch; 2000 Nov; 441(1):133-7. PubMed ID: 11205052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T84 cells: anion selectivity demonstrates expression of Cl- conductance affected in cystic fibrosis.
    Bell CL; Quinton PM
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C555-62. PubMed ID: 1372477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells.
    Rich DP; Anderson MP; Gregory RJ; Cheng SH; Paul S; Jefferson DM; McCann JD; Klinger KW; Smith AE; Welsh MJ
    Nature; 1990 Sep; 347(6291):358-63. PubMed ID: 1699126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C226-33. PubMed ID: 2465689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of epithelial chloride channels by cytosol.
    Kunzelmann K; Tilmann M; Hansen CP; Greger R
    Pflugers Arch; 1991 Jun; 418(5):479-90. PubMed ID: 1653943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acids inhibit apical membrane chloride channels in airway epithelia.
    Anderson MP; Welsh MJ
    Proc Natl Acad Sci U S A; 1990 Sep; 87(18):7334-8. PubMed ID: 1698296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways.
    Mall M; Bleich M; Greger R; Schreiber R; Kunzelmann K
    J Clin Invest; 1998 Jul; 102(1):15-21. PubMed ID: 9649552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Na(+)-H+ exchange in human normal and cystic fibrotic ciliated airway epithelium.
    Paradiso AM
    Am J Physiol; 1992 Jun; 262(6 Pt 1):L757-64. PubMed ID: 1319688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a short-chain phospholipid on ion transport pathways in rabbit nasal airway epithelium.
    Röpke M; Hansen M; Carstens S; Christensen P; Danielsen G; Frederiksen O
    Am J Physiol; 1996 Oct; 271(4 Pt 1):L646-55. PubMed ID: 8897913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minor role of Cl- secretion in non-cystic fibrosis and cystic fibrosis human nasal epithelium.
    Rückes-Nilges C; Weber U; Lindemann H; Münker G; Clauss W; Weber WM
    Cell Physiol Biochem; 1999; 9(1):1-10. PubMed ID: 10352340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of linoleic acid metabolism and cellular phospholipid fatty acid composition in LLC-PK cells cultured at low magnesium concentrations.
    Mahfouz MM; Smith TL; Kummerow FA
    Biochim Biophys Acta; 1989 Nov; 1006(1):70-4. PubMed ID: 2804072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice.
    Grubb BR; Vick RN; Boucher RC
    Am J Physiol; 1994 May; 266(5 Pt 1):C1478-83. PubMed ID: 7515571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia.
    Smith JJ; Welsh MJ
    J Clin Invest; 1992 Apr; 89(4):1148-53. PubMed ID: 1313448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.