These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 1323321)
1. MyoD protein expression in Xenopus embryos closely follows a mesoderm induction-dependent amplification of MyoD transcription and is synchronous across the future somite axis. Harvey RP Mech Dev; 1992 May; 37(3):141-9. PubMed ID: 1323321 [TBL] [Abstract][Full Text] [Related]
2. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. Hopwood ND; Pluck A; Gurdon JB EMBO J; 1989 Nov; 8(11):3409-17. PubMed ID: 2555164 [TBL] [Abstract][Full Text] [Related]
3. The Xenopus MyoD gene: an unlocalised maternal mRNA predates lineage-restricted expression in the early embryo. Harvey RP Development; 1990 Apr; 108(4):669-80. PubMed ID: 2167198 [TBL] [Abstract][Full Text] [Related]
4. Widespread expression of MyoD genes in Xenopus embryos is amplified in presumptive muscle as a delayed response to mesoderm induction. Harvey RP Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9198-202. PubMed ID: 1656464 [TBL] [Abstract][Full Text] [Related]
5. Xenopus embryos contain a somite-specific, MyoD-like protein that binds to a promoter site required for muscle actin expression. Taylor MV; Gurdon JB; Hopwood ND; Towers N; Mohun TJ Genes Dev; 1991 Jul; 5(7):1149-60. PubMed ID: 1648530 [TBL] [Abstract][Full Text] [Related]
6. Transient expression of XMyoD in non-somitic mesoderm of Xenopus gastrulae. Frank D; Harland RM Development; 1991 Dec; 113(4):1387-93. PubMed ID: 1667381 [TBL] [Abstract][Full Text] [Related]
7. Ubiquitous MyoD transcription at the midblastula transition precedes induction-dependent MyoD expression in presumptive mesoderm of X. laevis. Rupp RA; Weintraub H Cell; 1991 Jun; 65(6):927-37. PubMed ID: 1675156 [TBL] [Abstract][Full Text] [Related]
8. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm. Kumano G; Ezal C; Smith WC Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585 [TBL] [Abstract][Full Text] [Related]
9. An inhibitory effect of Xenopus gastrula ectoderm on muscle cell differentiation and its role for dorsoventral patterning of mesoderm. Kato K; Gurdon JB Dev Biol; 1994 May; 163(1):222-9. PubMed ID: 8174778 [TBL] [Abstract][Full Text] [Related]
10. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos. Dali L; Gustin J; Perry K; Domingo CR Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823 [TBL] [Abstract][Full Text] [Related]
11. Notochord signals control the transcriptional cascade of myogenic bHLH genes in somites of quail embryos. Pownall ME; Strunk KE; Emerson CP Development; 1996 May; 122(5):1475-88. PubMed ID: 8625835 [TBL] [Abstract][Full Text] [Related]
12. The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos. Chambers AE; Logan M; Kotecha S; Towers N; Sparrow D; Mohun TJ Genes Dev; 1994 Jun; 8(11):1324-34. PubMed ID: 7926733 [TBL] [Abstract][Full Text] [Related]
13. Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Knöchel S; Lef J; Clement J; Klocke B; Hille S; Köster M; Knöchel W Mech Dev; 1992 Aug; 38(2):157-65. PubMed ID: 1358174 [TBL] [Abstract][Full Text] [Related]
14. [Early stages of myogenesis as seen through the action of the myf-5 gene]. Buckingham M C R Seances Soc Biol Fil; 1997; 191(1):43-54. PubMed ID: 9181127 [TBL] [Abstract][Full Text] [Related]
15. The RNA-binding protein Seb4/RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development. Li HY; Bourdelas A; Carron C; Shi DL Mech Dev; 2010; 127(5-6):281-91. PubMed ID: 20338237 [TBL] [Abstract][Full Text] [Related]
16. RARγ is required for mesodermal gene expression prior to gastrulation in Janesick A; Tang W; Shioda T; Blumberg B Development; 2018 Sep; 145(18):. PubMed ID: 30111657 [TBL] [Abstract][Full Text] [Related]
17. Control of somitic expression of tenascin in Xenopus embryos by myogenic factors and Brachyury. Umbhauer M; Riou JF; Smith JC; Boucaut JC Dev Dyn; 1994 Aug; 200(4):269-77. PubMed ID: 7527682 [TBL] [Abstract][Full Text] [Related]
18. An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. McQueen C; Pownall ME Mech Dev; 2017 Aug; 146():1-9. PubMed ID: 28536000 [TBL] [Abstract][Full Text] [Related]
19. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Shook DR; Majer C; Keller R Dev Biol; 2004 Jun; 270(1):163-85. PubMed ID: 15136148 [TBL] [Abstract][Full Text] [Related]
20. Cells remain competent to respond to mesoderm-inducing signals present during gastrulation in Xenopus laevis. Domingo C; Keller R Dev Biol; 2000 Sep; 225(1):226-40. PubMed ID: 10964477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]